{"title":"三阴性乳腺癌 (TNBC) 中纳米材料的研究趋势:2010 年至 2024 年文献计量分析。","authors":"Hongyi Liang, Guoliang Yin, Dandan Feng, Hanhan Chen, Xiaofei Liu, Jingwei Li","doi":"10.1007/s13346-024-01704-9","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is an important cause of cancer-related death in the world. As a subtype of BC with the worst prognosis, triple-negative breast cancer (TNBC) is a serious threat to human life and health. In recent years, there has been an increasing amount of research aimed at designing and developing nanomaterials for the diagnosis and treatment of TNBC. The purpose of this study was to comprehensively evaluate the current status and trend of the application of nanomaterials in TNBC through bibliometric analysis. Studies focusing on nanomaterials and cancer were searched from the Web of Science core collection (WOSCC) database, and relevant literature meeting the inclusion criteria was selected for inclusion in the study. VOSviewer and CiteSpace were used to perform bibliometric and visual analysis of the included publications. A total of 2338 studies were included. Annual publications have increased from 2010 to 2024. China, the United States and India were the leading countries in the field, accounting for 66.1%, 11.5% and 7.2% of publications, respectively. The Chinese Academy of Sciences and Li Yaping were the most influential institutions and authors, respectively. Journal of Controlled Release was considered the most productive journal. Cancer Research was considered to be the most co-cited journal. Drug delivery and anti-cancer mechanisms related to nanomaterials were considered to be the most widely studied aspects, and green synthesis and anti-cancer mechanisms were also recent research hotspots. In this study, the characteristics of publications were summarized, and the most influential countries, institutions, authors, journals, hot spots and trends in the application of nanomaterials in cancer were identified. These findings provide valuable insights into the current state and future direction of this dynamic field.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research trends on nanomaterials in triple negative breast cancer (TNBC): a bibliometric analysis from 2010 to 2024.\",\"authors\":\"Hongyi Liang, Guoliang Yin, Dandan Feng, Hanhan Chen, Xiaofei Liu, Jingwei Li\",\"doi\":\"10.1007/s13346-024-01704-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer (BC) is an important cause of cancer-related death in the world. As a subtype of BC with the worst prognosis, triple-negative breast cancer (TNBC) is a serious threat to human life and health. In recent years, there has been an increasing amount of research aimed at designing and developing nanomaterials for the diagnosis and treatment of TNBC. The purpose of this study was to comprehensively evaluate the current status and trend of the application of nanomaterials in TNBC through bibliometric analysis. Studies focusing on nanomaterials and cancer were searched from the Web of Science core collection (WOSCC) database, and relevant literature meeting the inclusion criteria was selected for inclusion in the study. VOSviewer and CiteSpace were used to perform bibliometric and visual analysis of the included publications. A total of 2338 studies were included. Annual publications have increased from 2010 to 2024. China, the United States and India were the leading countries in the field, accounting for 66.1%, 11.5% and 7.2% of publications, respectively. The Chinese Academy of Sciences and Li Yaping were the most influential institutions and authors, respectively. Journal of Controlled Release was considered the most productive journal. Cancer Research was considered to be the most co-cited journal. Drug delivery and anti-cancer mechanisms related to nanomaterials were considered to be the most widely studied aspects, and green synthesis and anti-cancer mechanisms were also recent research hotspots. In this study, the characteristics of publications were summarized, and the most influential countries, institutions, authors, journals, hot spots and trends in the application of nanomaterials in cancer were identified. These findings provide valuable insights into the current state and future direction of this dynamic field.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01704-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01704-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Research trends on nanomaterials in triple negative breast cancer (TNBC): a bibliometric analysis from 2010 to 2024.
Breast cancer (BC) is an important cause of cancer-related death in the world. As a subtype of BC with the worst prognosis, triple-negative breast cancer (TNBC) is a serious threat to human life and health. In recent years, there has been an increasing amount of research aimed at designing and developing nanomaterials for the diagnosis and treatment of TNBC. The purpose of this study was to comprehensively evaluate the current status and trend of the application of nanomaterials in TNBC through bibliometric analysis. Studies focusing on nanomaterials and cancer were searched from the Web of Science core collection (WOSCC) database, and relevant literature meeting the inclusion criteria was selected for inclusion in the study. VOSviewer and CiteSpace were used to perform bibliometric and visual analysis of the included publications. A total of 2338 studies were included. Annual publications have increased from 2010 to 2024. China, the United States and India were the leading countries in the field, accounting for 66.1%, 11.5% and 7.2% of publications, respectively. The Chinese Academy of Sciences and Li Yaping were the most influential institutions and authors, respectively. Journal of Controlled Release was considered the most productive journal. Cancer Research was considered to be the most co-cited journal. Drug delivery and anti-cancer mechanisms related to nanomaterials were considered to be the most widely studied aspects, and green synthesis and anti-cancer mechanisms were also recent research hotspots. In this study, the characteristics of publications were summarized, and the most influential countries, institutions, authors, journals, hot spots and trends in the application of nanomaterials in cancer were identified. These findings provide valuable insights into the current state and future direction of this dynamic field.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.