{"title":"听觉对比阈值(ACT)测试:一种临床频谱时相调制检测试验。","authors":"Johannes Zaar , Lisbeth Birkelund Simonsen , Raul Sanchez-Lopez , Søren Laugesen","doi":"10.1016/j.heares.2024.109103","DOIUrl":null,"url":null,"abstract":"<div><p>Over the last decade, multiple studies have shown that hearing-impaired listeners’ speech-in-noise reception ability, measured with audibility compensation, is closely associated with performance in spectro-temporal modulation (STM) detection tests. STM tests thus have the potential to provide highly relevant beyond-the-audiogram information in the clinic, but the available STM tests have not been optimized for clinical use in terms of test duration, required equipment, and procedural standardization. The present study introduces a quick-and-simple clinically viable STM test, named the Audible Contrast Threshold (ACT™) test. First, an experimenter-controlled STM measurement paradigm was developed, in which the patient is presented bilaterally with a continuous audibility-corrected noise via headphones and asked to press a pushbutton whenever they hear an STM target sound in the noise. The patient's threshold is established using a Hughson-Westlake tracking procedure with a three-out-of-five criterion and then refined by post-processing the collected data using a logistic function. Different stimulation paradigms were tested in 28 hearing-impaired participants and compared to data previously measured in the same participants with an established STM test paradigm. The best stimulation paradigm showed excellent test-retest reliability and good agreement with the established laboratory version. Second, the best stimulation paradigm with 1-second noise “waves” (windowed noise) was chosen, further optimized with respect to step size and logistic-function fitting, and tested in a population of 25 young normal-hearing participants using various types of transducers to obtain normative data. Based on these normative data, the “normalized Contrast Level” (in dB nCL) scale was defined, where 0 ± 4 dB nCL corresponds to normal performance and elevated dB nCL values indicate the degree of audible contrast loss. Overall, the results of the present study suggest that the ACT test may be considered a reliable, quick-and-simple (and thus clinically viable) test of STM sensitivity. The ACT can be measured directly after the audiogram using the same set up, adding only a few minutes to the process.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"453 ","pages":"Article 109103"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378595524001564/pdfft?md5=ca5cd0522acec385daee6132f78d3bc9&pid=1-s2.0-S0378595524001564-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Audible Contrast Threshold (ACT) test: A clinical spectro-temporal modulation detection test\",\"authors\":\"Johannes Zaar , Lisbeth Birkelund Simonsen , Raul Sanchez-Lopez , Søren Laugesen\",\"doi\":\"10.1016/j.heares.2024.109103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the last decade, multiple studies have shown that hearing-impaired listeners’ speech-in-noise reception ability, measured with audibility compensation, is closely associated with performance in spectro-temporal modulation (STM) detection tests. STM tests thus have the potential to provide highly relevant beyond-the-audiogram information in the clinic, but the available STM tests have not been optimized for clinical use in terms of test duration, required equipment, and procedural standardization. The present study introduces a quick-and-simple clinically viable STM test, named the Audible Contrast Threshold (ACT™) test. First, an experimenter-controlled STM measurement paradigm was developed, in which the patient is presented bilaterally with a continuous audibility-corrected noise via headphones and asked to press a pushbutton whenever they hear an STM target sound in the noise. The patient's threshold is established using a Hughson-Westlake tracking procedure with a three-out-of-five criterion and then refined by post-processing the collected data using a logistic function. Different stimulation paradigms were tested in 28 hearing-impaired participants and compared to data previously measured in the same participants with an established STM test paradigm. The best stimulation paradigm showed excellent test-retest reliability and good agreement with the established laboratory version. Second, the best stimulation paradigm with 1-second noise “waves” (windowed noise) was chosen, further optimized with respect to step size and logistic-function fitting, and tested in a population of 25 young normal-hearing participants using various types of transducers to obtain normative data. Based on these normative data, the “normalized Contrast Level” (in dB nCL) scale was defined, where 0 ± 4 dB nCL corresponds to normal performance and elevated dB nCL values indicate the degree of audible contrast loss. Overall, the results of the present study suggest that the ACT test may be considered a reliable, quick-and-simple (and thus clinically viable) test of STM sensitivity. The ACT can be measured directly after the audiogram using the same set up, adding only a few minutes to the process.</p></div>\",\"PeriodicalId\":12881,\"journal\":{\"name\":\"Hearing Research\",\"volume\":\"453 \",\"pages\":\"Article 109103\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378595524001564/pdfft?md5=ca5cd0522acec385daee6132f78d3bc9&pid=1-s2.0-S0378595524001564-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hearing Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378595524001564\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524001564","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
The Audible Contrast Threshold (ACT) test: A clinical spectro-temporal modulation detection test
Over the last decade, multiple studies have shown that hearing-impaired listeners’ speech-in-noise reception ability, measured with audibility compensation, is closely associated with performance in spectro-temporal modulation (STM) detection tests. STM tests thus have the potential to provide highly relevant beyond-the-audiogram information in the clinic, but the available STM tests have not been optimized for clinical use in terms of test duration, required equipment, and procedural standardization. The present study introduces a quick-and-simple clinically viable STM test, named the Audible Contrast Threshold (ACT™) test. First, an experimenter-controlled STM measurement paradigm was developed, in which the patient is presented bilaterally with a continuous audibility-corrected noise via headphones and asked to press a pushbutton whenever they hear an STM target sound in the noise. The patient's threshold is established using a Hughson-Westlake tracking procedure with a three-out-of-five criterion and then refined by post-processing the collected data using a logistic function. Different stimulation paradigms were tested in 28 hearing-impaired participants and compared to data previously measured in the same participants with an established STM test paradigm. The best stimulation paradigm showed excellent test-retest reliability and good agreement with the established laboratory version. Second, the best stimulation paradigm with 1-second noise “waves” (windowed noise) was chosen, further optimized with respect to step size and logistic-function fitting, and tested in a population of 25 young normal-hearing participants using various types of transducers to obtain normative data. Based on these normative data, the “normalized Contrast Level” (in dB nCL) scale was defined, where 0 ± 4 dB nCL corresponds to normal performance and elevated dB nCL values indicate the degree of audible contrast loss. Overall, the results of the present study suggest that the ACT test may be considered a reliable, quick-and-simple (and thus clinically viable) test of STM sensitivity. The ACT can be measured directly after the audiogram using the same set up, adding only a few minutes to the process.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.