{"title":"Athyrium yokoscense是一种耐镉蕨类植物,在其根部和气生部分表现出两种镉胁迫缓解策略。","authors":"Yuko Ukai, Hiroki Taoka, Manaka Kamada, Yuko Wakui, Fumiyuki Goto, Kazuyoshi Kitazaki, Tomoko Abe, Akiko Hokura, Toshihiro Yoshihara, Hiroaki Shimada","doi":"10.1007/s10265-024-01574-9","DOIUrl":null,"url":null,"abstract":"<p><p>Athyrium yokoscense is hypertolerant to cadmium (Cd) and can grow normally under a high Cd concentration despite Cd being a highly toxic heavy metal. To mitigate Cd stress in general plant species, Cd is promptly chelated with a thiol compound and is isolated into vacuoles. Generated active oxygen species (ROS) in the cytoplasm are removed by reduced glutathione. However, we found many differences in the countermeasures in A. yokoscense. Thiol compounds accumulated in the stele of the roots, although a long-term Cd exposure induced Cd accumulation in the aerial parts. Synchrotron radiation-based X-ray fluorescence (SR-XRF) analysis indicated that a large amount of Cd was localized in the cell walls of the roots. Overexpression of AyNramp5a, encoding a representative Fe and Mn transporter of A. yokoscense, increased both Cd uptake and Fe and Mn uptake in rice calli under the Cd exposure conditions. Organic acids are known to play a key role in reducing Cd availability to the plants by forming chelation and preventing its entry in free form into the roots. In A. yokoscense roots, Organic acids were abundantly detected. Investigating the chemical forms of the Cd molecules by X-ray absorption fine structure (XAFS) analysis detected many compounds with Cd-oxygen (Cd-O) binding in A. yokoscense roots, whereas in the aerial parts, the ratio of the compounds with Cd-sulfur (Cd-S) binding was increased. Together, our results imply that the strong Cd tolerance of A. yokoscense is an attribute of the following two mechanisms: Cd-O compound formation in the cell wall is a barrier to reduce Cd uptake into aerial parts. Thiol compounds in the region of root stele are involved in detoxication of Cd by formation of Cd-S compounds.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"1019-1031"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Athyrium yokoscense, a cadmium-hypertolerant fern, exhibits two cadmium stress mitigation strategies in its roots and aerial parts.\",\"authors\":\"Yuko Ukai, Hiroki Taoka, Manaka Kamada, Yuko Wakui, Fumiyuki Goto, Kazuyoshi Kitazaki, Tomoko Abe, Akiko Hokura, Toshihiro Yoshihara, Hiroaki Shimada\",\"doi\":\"10.1007/s10265-024-01574-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Athyrium yokoscense is hypertolerant to cadmium (Cd) and can grow normally under a high Cd concentration despite Cd being a highly toxic heavy metal. To mitigate Cd stress in general plant species, Cd is promptly chelated with a thiol compound and is isolated into vacuoles. Generated active oxygen species (ROS) in the cytoplasm are removed by reduced glutathione. However, we found many differences in the countermeasures in A. yokoscense. Thiol compounds accumulated in the stele of the roots, although a long-term Cd exposure induced Cd accumulation in the aerial parts. Synchrotron radiation-based X-ray fluorescence (SR-XRF) analysis indicated that a large amount of Cd was localized in the cell walls of the roots. Overexpression of AyNramp5a, encoding a representative Fe and Mn transporter of A. yokoscense, increased both Cd uptake and Fe and Mn uptake in rice calli under the Cd exposure conditions. Organic acids are known to play a key role in reducing Cd availability to the plants by forming chelation and preventing its entry in free form into the roots. In A. yokoscense roots, Organic acids were abundantly detected. Investigating the chemical forms of the Cd molecules by X-ray absorption fine structure (XAFS) analysis detected many compounds with Cd-oxygen (Cd-O) binding in A. yokoscense roots, whereas in the aerial parts, the ratio of the compounds with Cd-sulfur (Cd-S) binding was increased. Together, our results imply that the strong Cd tolerance of A. yokoscense is an attribute of the following two mechanisms: Cd-O compound formation in the cell wall is a barrier to reduce Cd uptake into aerial parts. Thiol compounds in the region of root stele are involved in detoxication of Cd by formation of Cd-S compounds.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\" \",\"pages\":\"1019-1031\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-024-01574-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01574-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
尽管镉是一种毒性很强的重金属,但横纹鱼藻(Athyrium yokoscense)对镉(Cd)有很强的耐受性,能在高浓度镉环境下正常生长。为了减轻一般植物物种的镉胁迫,镉会被硫醇化合物迅速螯合,并被分离到液泡中。细胞质中产生的活性氧(ROS)被还原型谷胱甘肽清除。然而,我们发现横纹肌溶解酵母的应对措施有许多不同之处。虽然长期接触镉会导致镉在气生部分积累,但硫醇化合物在根的茎中积累。基于同步辐射的 X 射线荧光(SR-XRF)分析表明,大量镉定位于根的细胞壁中。过量表达 AyNramp5a(AyNramp5a 编码横纹夜蛾的一种代表性铁和锰转运体)可提高水稻胼胝体在镉暴露条件下对镉的吸收以及对铁和锰的吸收。众所周知,有机酸能形成螯合作用,阻止镉以游离形式进入根部,从而在降低植物对镉的利用率方面发挥关键作用。在 A. yokoscense 的根中,有机酸被大量检测到。通过 X 射线吸收精细结构(XAFS)分析研究镉分子的化学形态,在横断山脉的根中检测到许多与镉氧结合(Cd-O)的化合物,而在气生部分,与镉硫结合(Cd-S)的化合物比例有所增加。我们的研究结果表明,A. yokoscense 对镉的强烈耐受性是由以下两种机制造成的:细胞壁中形成的 Cd-O 化合物是减少气生部分吸收镉的屏障。根茎区域的硫醇化合物通过形成 Cd-S 化合物参与镉的解毒。
Athyrium yokoscense, a cadmium-hypertolerant fern, exhibits two cadmium stress mitigation strategies in its roots and aerial parts.
Athyrium yokoscense is hypertolerant to cadmium (Cd) and can grow normally under a high Cd concentration despite Cd being a highly toxic heavy metal. To mitigate Cd stress in general plant species, Cd is promptly chelated with a thiol compound and is isolated into vacuoles. Generated active oxygen species (ROS) in the cytoplasm are removed by reduced glutathione. However, we found many differences in the countermeasures in A. yokoscense. Thiol compounds accumulated in the stele of the roots, although a long-term Cd exposure induced Cd accumulation in the aerial parts. Synchrotron radiation-based X-ray fluorescence (SR-XRF) analysis indicated that a large amount of Cd was localized in the cell walls of the roots. Overexpression of AyNramp5a, encoding a representative Fe and Mn transporter of A. yokoscense, increased both Cd uptake and Fe and Mn uptake in rice calli under the Cd exposure conditions. Organic acids are known to play a key role in reducing Cd availability to the plants by forming chelation and preventing its entry in free form into the roots. In A. yokoscense roots, Organic acids were abundantly detected. Investigating the chemical forms of the Cd molecules by X-ray absorption fine structure (XAFS) analysis detected many compounds with Cd-oxygen (Cd-O) binding in A. yokoscense roots, whereas in the aerial parts, the ratio of the compounds with Cd-sulfur (Cd-S) binding was increased. Together, our results imply that the strong Cd tolerance of A. yokoscense is an attribute of the following two mechanisms: Cd-O compound formation in the cell wall is a barrier to reduce Cd uptake into aerial parts. Thiol compounds in the region of root stele are involved in detoxication of Cd by formation of Cd-S compounds.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.