黑岩鱼(Sebastes schlegelii)在近海风电场噪声胁迫下的反应机制转录组分析。

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2024-08-30 DOI:10.1016/j.marenvres.2024.106717
{"title":"黑岩鱼(Sebastes schlegelii)在近海风电场噪声胁迫下的反应机制转录组分析。","authors":"","doi":"10.1016/j.marenvres.2024.106717","DOIUrl":null,"url":null,"abstract":"<div><p>During the operational phase of offshore wind farms, the generation of low-frequency underwater noise has received widespread attention due to its potential adverse impact on fish health. This study conducted a field survey of underwater noise at offshore wind farms located in Shandong province, China. Subsequently, a small-scale experiment was conducted to study the stress on black rockfish (<em>Sebastes schlegelii</em>). The fish were exposed to noise with dominant frequency of 80 Hz, 125 Hz and 250 Hz. These frequencies are same with the frequencies from wind power noise (wpn) at the actual site. After a 40-day experimental period, transcriptome sequencing was conducted on brain, liver, and kidney tissues of black rockfish to elucidate the underlying molecular mechanisms involved in the response to noise stress originating from offshore wind farms. The results revealed that the 125 Hz group exhibited the highest number of differentially expressed genes (DEGs) between the noise-exposed and control check group (CK group), with a total of 797 in the brain, 1076 in the liver, and 2468 in the kidney. Gene Ontology (GO) analysis showed that DEGs were significantly enriched in entries related to cellular processes, membrane components, binding, and metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were enriched mainly in metabolism, immunity, apoptosis, signal transduction, and diseases. The findings indicate that prolonged exposure to underwater noise from offshore wind farms may induce metabolic imbalance, immune dysfunction, and an increased risk of myocardial diseases in black rockfish.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic analysis of the response mechanisms of black rockfish (Sebastes schlegelii) under noise stress from offshore wind farms\",\"authors\":\"\",\"doi\":\"10.1016/j.marenvres.2024.106717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the operational phase of offshore wind farms, the generation of low-frequency underwater noise has received widespread attention due to its potential adverse impact on fish health. This study conducted a field survey of underwater noise at offshore wind farms located in Shandong province, China. Subsequently, a small-scale experiment was conducted to study the stress on black rockfish (<em>Sebastes schlegelii</em>). The fish were exposed to noise with dominant frequency of 80 Hz, 125 Hz and 250 Hz. These frequencies are same with the frequencies from wind power noise (wpn) at the actual site. After a 40-day experimental period, transcriptome sequencing was conducted on brain, liver, and kidney tissues of black rockfish to elucidate the underlying molecular mechanisms involved in the response to noise stress originating from offshore wind farms. The results revealed that the 125 Hz group exhibited the highest number of differentially expressed genes (DEGs) between the noise-exposed and control check group (CK group), with a total of 797 in the brain, 1076 in the liver, and 2468 in the kidney. Gene Ontology (GO) analysis showed that DEGs were significantly enriched in entries related to cellular processes, membrane components, binding, and metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were enriched mainly in metabolism, immunity, apoptosis, signal transduction, and diseases. The findings indicate that prolonged exposure to underwater noise from offshore wind farms may induce metabolic imbalance, immune dysfunction, and an increased risk of myocardial diseases in black rockfish.</p></div>\",\"PeriodicalId\":18204,\"journal\":{\"name\":\"Marine environmental research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine environmental research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141113624003787\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624003787","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在海上风电场的运营阶段,由于低频水下噪声可能会对鱼类健康产生不利影响,因此受到广泛关注。本研究对位于中国山东省的海上风电场的水下噪声进行了实地调查。随后,进行了一项小规模实验,研究黑鳞石首鱼(Sebastes schlegelii)所承受的压力。这些鱼暴露在主频为 80 Hz、125 Hz 和 250 Hz 的噪声中。这些频率与实际地点的风电噪声(wpn)频率相同。经过 40 天的实验后,对黑石首鱼的脑、肝和肾组织进行了转录组测序,以阐明黑石首鱼对海上风电场噪声应激反应的潜在分子机制。结果显示,125 Hz组与对照组(CK组)之间的差异表达基因(DEGs)数量最多,脑部共有797个,肝脏1076个,肾脏2468个。基因本体(GO)分析表明,与细胞过程、膜成分、结合和新陈代谢相关的条目明显富集了 DEGs。京都基因和基因组百科全书(KEGG)分析表明,DEGs主要富集在新陈代谢、免疫、细胞凋亡、信号转导和疾病领域。研究结果表明,长期暴露于海上风电场的水下噪声可能会诱发黑岩鱼新陈代谢失衡、免疫功能紊乱和心肌疾病风险增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transcriptomic analysis of the response mechanisms of black rockfish (Sebastes schlegelii) under noise stress from offshore wind farms

During the operational phase of offshore wind farms, the generation of low-frequency underwater noise has received widespread attention due to its potential adverse impact on fish health. This study conducted a field survey of underwater noise at offshore wind farms located in Shandong province, China. Subsequently, a small-scale experiment was conducted to study the stress on black rockfish (Sebastes schlegelii). The fish were exposed to noise with dominant frequency of 80 Hz, 125 Hz and 250 Hz. These frequencies are same with the frequencies from wind power noise (wpn) at the actual site. After a 40-day experimental period, transcriptome sequencing was conducted on brain, liver, and kidney tissues of black rockfish to elucidate the underlying molecular mechanisms involved in the response to noise stress originating from offshore wind farms. The results revealed that the 125 Hz group exhibited the highest number of differentially expressed genes (DEGs) between the noise-exposed and control check group (CK group), with a total of 797 in the brain, 1076 in the liver, and 2468 in the kidney. Gene Ontology (GO) analysis showed that DEGs were significantly enriched in entries related to cellular processes, membrane components, binding, and metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were enriched mainly in metabolism, immunity, apoptosis, signal transduction, and diseases. The findings indicate that prolonged exposure to underwater noise from offshore wind farms may induce metabolic imbalance, immune dysfunction, and an increased risk of myocardial diseases in black rockfish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
Microplastic biofilms promote the horizontal transfer of antibiotic resistance genes in estuarine environments. Mutligenerational chronic exposure to near future ocean acidification in European sea bass (Dicentrarchus labrax): Insights into the regulation of the transcriptome in a sensory organ involved in feed intake, the tongue. Quarry rock reef design features influence fish assemblage structure across a systematically heterogenous restoration reef. Microbial ocean-atmosphere transfer: The influence of sewage discharge into coastal waters on bioaerosols from an urban beach in the subtropical Atlantic. Skeletal magnesium content in Antarctic echinoderms along a latitudinal gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1