{"title":"通过微管高速公路进行细胞间通信","authors":"Lorél Y Medina, Rita E Serda","doi":"10.1007/978-3-031-62036-2_8","DOIUrl":null,"url":null,"abstract":"<p><p>Tunneling nanotubes (TNTs) are open-ended, membrane-encased extensions that connect neighboring cells. They have diameters up to 1 μm but are able to expand to convey large cargos. Lengths vary depending on the distance of the cells but have been reported to be capable of extending beyond 300 μm. They have actin cytoskeletons that are essential for their formation, and may or may not have microtubule networks. It is thought that thin TNTs lack microtubules, while thicker TNTs have microtubular highways that use motor proteins to convey materials, including proteins, mitochondria, and nanoparticles between cells. Specifically, the presence of dynein and myosin support trafficking of cargo in both directions. The purpose of these connections is to enable cells to work as a unit or to extend cell life by diluting cytotoxic agents or acquiring biological material needed to survive.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercellular Communication Through Microtubular Highways.\",\"authors\":\"Lorél Y Medina, Rita E Serda\",\"doi\":\"10.1007/978-3-031-62036-2_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tunneling nanotubes (TNTs) are open-ended, membrane-encased extensions that connect neighboring cells. They have diameters up to 1 μm but are able to expand to convey large cargos. Lengths vary depending on the distance of the cells but have been reported to be capable of extending beyond 300 μm. They have actin cytoskeletons that are essential for their formation, and may or may not have microtubule networks. It is thought that thin TNTs lack microtubules, while thicker TNTs have microtubular highways that use motor proteins to convey materials, including proteins, mitochondria, and nanoparticles between cells. Specifically, the presence of dynein and myosin support trafficking of cargo in both directions. The purpose of these connections is to enable cells to work as a unit or to extend cell life by diluting cytotoxic agents or acquiring biological material needed to survive.</p>\",\"PeriodicalId\":39320,\"journal\":{\"name\":\"Results and Problems in Cell Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results and Problems in Cell Differentiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-62036-2_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-62036-2_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Intercellular Communication Through Microtubular Highways.
Tunneling nanotubes (TNTs) are open-ended, membrane-encased extensions that connect neighboring cells. They have diameters up to 1 μm but are able to expand to convey large cargos. Lengths vary depending on the distance of the cells but have been reported to be capable of extending beyond 300 μm. They have actin cytoskeletons that are essential for their formation, and may or may not have microtubule networks. It is thought that thin TNTs lack microtubules, while thicker TNTs have microtubular highways that use motor proteins to convey materials, including proteins, mitochondria, and nanoparticles between cells. Specifically, the presence of dynein and myosin support trafficking of cargo in both directions. The purpose of these connections is to enable cells to work as a unit or to extend cell life by diluting cytotoxic agents or acquiring biological material needed to survive.
期刊介绍:
Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.