{"title":"在原因不明的复发性自然流产中,MicroRNA-200c通过抑制PI3K/Akt信号传导促进滋养层细胞功能障碍。","authors":"Lei Yue , Hui Xu","doi":"10.1016/j.repbio.2024.100951","DOIUrl":null,"url":null,"abstract":"<div><p>Dysfunction in trophoblast cells is closely associated with the development of recurrent spontaneous abortion (RSA). Previous reports have indicated that microRNA (miR)−200c was upregulated in the serum of patients who have had abortions. This study aimed to investigate the regulatory effects and mechanisms of miR-200c in trophoblast cells. The human extravillous trophoblast cell line HTR-8/SVneo was either subjected to knockdown or overexpression of miR-200c, and its levels were measured using RT-qPCR. The cell behaviors of HTR-8/SVneo were assessed using CCK-8, Transwell, wound healing assays, and flow cytometry. Western blotting was used to detect the protein levels of Ki67, Bcl-2, Bax, MMP2/9, and PI3K/Akt-related markers. The findings revealed that miR-200c levels were higher in the villous tissues of URSA patients. Depletion of miR-200c impeded HTR-8/SVneo cell apoptosis and enhanced cell migration, invasiveness, and proliferation, while overexpression of miR-200c exhibited the opposite effects. The data suggested that mechanistically, miR-200c inactivated PI3K/Akt signaling in trophoblast cells. Furthermore, rescue experiments demonstrated that blocking PI3K/Akt signaling reversed the effects of miR-200c depletion on HTR-8/SVneo cell behavior. Therefore, miR-200c depletion can potentially improve trophoblast cell function by activating PI3K/Akt signaling.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":"24 4","pages":"Article 100951"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroRNA-200c promotes trophoblast cell dysfunction via inhibition of PI3K/Akt signaling in unexplained recurrent spontaneous abortion\",\"authors\":\"Lei Yue , Hui Xu\",\"doi\":\"10.1016/j.repbio.2024.100951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dysfunction in trophoblast cells is closely associated with the development of recurrent spontaneous abortion (RSA). Previous reports have indicated that microRNA (miR)−200c was upregulated in the serum of patients who have had abortions. This study aimed to investigate the regulatory effects and mechanisms of miR-200c in trophoblast cells. The human extravillous trophoblast cell line HTR-8/SVneo was either subjected to knockdown or overexpression of miR-200c, and its levels were measured using RT-qPCR. The cell behaviors of HTR-8/SVneo were assessed using CCK-8, Transwell, wound healing assays, and flow cytometry. Western blotting was used to detect the protein levels of Ki67, Bcl-2, Bax, MMP2/9, and PI3K/Akt-related markers. The findings revealed that miR-200c levels were higher in the villous tissues of URSA patients. Depletion of miR-200c impeded HTR-8/SVneo cell apoptosis and enhanced cell migration, invasiveness, and proliferation, while overexpression of miR-200c exhibited the opposite effects. The data suggested that mechanistically, miR-200c inactivated PI3K/Akt signaling in trophoblast cells. Furthermore, rescue experiments demonstrated that blocking PI3K/Akt signaling reversed the effects of miR-200c depletion on HTR-8/SVneo cell behavior. Therefore, miR-200c depletion can potentially improve trophoblast cell function by activating PI3K/Akt signaling.</p></div>\",\"PeriodicalId\":21018,\"journal\":{\"name\":\"Reproductive biology\",\"volume\":\"24 4\",\"pages\":\"Article 100951\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1642431X24000974\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1642431X24000974","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
MicroRNA-200c promotes trophoblast cell dysfunction via inhibition of PI3K/Akt signaling in unexplained recurrent spontaneous abortion
Dysfunction in trophoblast cells is closely associated with the development of recurrent spontaneous abortion (RSA). Previous reports have indicated that microRNA (miR)−200c was upregulated in the serum of patients who have had abortions. This study aimed to investigate the regulatory effects and mechanisms of miR-200c in trophoblast cells. The human extravillous trophoblast cell line HTR-8/SVneo was either subjected to knockdown or overexpression of miR-200c, and its levels were measured using RT-qPCR. The cell behaviors of HTR-8/SVneo were assessed using CCK-8, Transwell, wound healing assays, and flow cytometry. Western blotting was used to detect the protein levels of Ki67, Bcl-2, Bax, MMP2/9, and PI3K/Akt-related markers. The findings revealed that miR-200c levels were higher in the villous tissues of URSA patients. Depletion of miR-200c impeded HTR-8/SVneo cell apoptosis and enhanced cell migration, invasiveness, and proliferation, while overexpression of miR-200c exhibited the opposite effects. The data suggested that mechanistically, miR-200c inactivated PI3K/Akt signaling in trophoblast cells. Furthermore, rescue experiments demonstrated that blocking PI3K/Akt signaling reversed the effects of miR-200c depletion on HTR-8/SVneo cell behavior. Therefore, miR-200c depletion can potentially improve trophoblast cell function by activating PI3K/Akt signaling.
期刊介绍:
An official journal of the Society for Biology of Reproduction and the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn, Poland.
Reproductive Biology is an international, peer-reviewed journal covering all aspects of reproduction in vertebrates. The journal invites original research papers, short communications, review articles and commentaries dealing with reproductive physiology, endocrinology, immunology, molecular and cellular biology, receptor studies, animal breeding as well as andrology, embryology, infertility, assisted reproduction and contraception. Papers from both basic and clinical research will be considered.