{"title":"通过时空数据分析城市交通事故模式:使用带有空间约束的稀疏非负矩阵因式分解模型的城市级研究","authors":"Jieling Jin , Pan Liu , Helai Huang , Yuxuan Dong","doi":"10.1016/j.apgeog.2024.103402","DOIUrl":null,"url":null,"abstract":"<div><p>Urban traffic crashes represent a significant challenge affecting public safety and urban mobility worldwide. This study introduces a novel application of Sparse Non-negative Matrix Factorization with spatial constraints to analyze spatio-temporal patterns of traffic crashes at a city level. Using comprehensive crash data from Denver and Manhattan during 2020, we developed and validated a model capable of capturing distinct temporal dynamics and spatial distributions of traffic crashes. Unlike traditional methods, our approach integrates sparsity and spatial constraints, enhancing the model's ability to handle the inherent sparsity and geographical dependencies found in urban traffic data. The results demonstrate the model's effectiveness in identifying high-risk areas and times, providing actionable insights that can inform urban planning and targeted safety interventions. The study underscores the potential of advanced data-driven techniques in urban traffic analysis and contributes to the broader efforts of improving traffic safety through informed decision-making and policy development.</p></div>","PeriodicalId":48396,"journal":{"name":"Applied Geography","volume":"172 ","pages":"Article 103402"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing urban traffic crash patterns through spatio-temporal data: A city-level study using a sparse non-negative matrix factorization model with spatial constraints approach\",\"authors\":\"Jieling Jin , Pan Liu , Helai Huang , Yuxuan Dong\",\"doi\":\"10.1016/j.apgeog.2024.103402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban traffic crashes represent a significant challenge affecting public safety and urban mobility worldwide. This study introduces a novel application of Sparse Non-negative Matrix Factorization with spatial constraints to analyze spatio-temporal patterns of traffic crashes at a city level. Using comprehensive crash data from Denver and Manhattan during 2020, we developed and validated a model capable of capturing distinct temporal dynamics and spatial distributions of traffic crashes. Unlike traditional methods, our approach integrates sparsity and spatial constraints, enhancing the model's ability to handle the inherent sparsity and geographical dependencies found in urban traffic data. The results demonstrate the model's effectiveness in identifying high-risk areas and times, providing actionable insights that can inform urban planning and targeted safety interventions. The study underscores the potential of advanced data-driven techniques in urban traffic analysis and contributes to the broader efforts of improving traffic safety through informed decision-making and policy development.</p></div>\",\"PeriodicalId\":48396,\"journal\":{\"name\":\"Applied Geography\",\"volume\":\"172 \",\"pages\":\"Article 103402\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143622824002078\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143622824002078","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Analyzing urban traffic crash patterns through spatio-temporal data: A city-level study using a sparse non-negative matrix factorization model with spatial constraints approach
Urban traffic crashes represent a significant challenge affecting public safety and urban mobility worldwide. This study introduces a novel application of Sparse Non-negative Matrix Factorization with spatial constraints to analyze spatio-temporal patterns of traffic crashes at a city level. Using comprehensive crash data from Denver and Manhattan during 2020, we developed and validated a model capable of capturing distinct temporal dynamics and spatial distributions of traffic crashes. Unlike traditional methods, our approach integrates sparsity and spatial constraints, enhancing the model's ability to handle the inherent sparsity and geographical dependencies found in urban traffic data. The results demonstrate the model's effectiveness in identifying high-risk areas and times, providing actionable insights that can inform urban planning and targeted safety interventions. The study underscores the potential of advanced data-driven techniques in urban traffic analysis and contributes to the broader efforts of improving traffic safety through informed decision-making and policy development.
期刊介绍:
Applied Geography is a journal devoted to the publication of research which utilizes geographic approaches (human, physical, nature-society and GIScience) to resolve human problems that have a spatial dimension. These problems may be related to the assessment, management and allocation of the world physical and/or human resources. The underlying rationale of the journal is that only through a clear understanding of the relevant societal, physical, and coupled natural-humans systems can we resolve such problems. Papers are invited on any theme involving the application of geographical theory and methodology in the resolution of human problems.