用于提高大众快速交通客流预测性能的动态交通网络表示模型

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2024-08-30 DOI:10.1016/j.knosys.2024.112442
Jheng-Long Wu , Wei-Yi Chung , Yu-Hsuan Wu , Yen-Nan Ho
{"title":"用于提高大众快速交通客流预测性能的动态交通网络表示模型","authors":"Jheng-Long Wu ,&nbsp;Wei-Yi Chung ,&nbsp;Yu-Hsuan Wu ,&nbsp;Yen-Nan Ho","doi":"10.1016/j.knosys.2024.112442","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate machine learning predictions of passenger flow data for mass rapid transit (MRT) systems can considerably improve operational efficiency by enabling better allocation of train and human resources. However, such predictions are challenging because MRT networks have complex structures with route dependence and transfer stations. Although the static state of an MRT network has been computed in previous studies, a comprehensive understanding of an MRT network requires characterizing its dynamics. Therefore, this paper proposes a dynamic traffic network representation (DTNR) model that captures station features from historical traffic flows and geographical information of MRT stations. Furthermore, a multilevel attention network (MLAN) model is proposed to predict MRT passenger flow as a downstream task following the pretraining of the DTNR model. The experimental results of this study indicate that the developed DTNR and MLAN models can accurately predict MRT passenger flow. These models are widely applicable to different MRT systems and passenger flow situations, making them a valuable tool for transportation planners and operators.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic traffic network representation model for improving the prediction performance of passenger flow for mass rapid transit\",\"authors\":\"Jheng-Long Wu ,&nbsp;Wei-Yi Chung ,&nbsp;Yu-Hsuan Wu ,&nbsp;Yen-Nan Ho\",\"doi\":\"10.1016/j.knosys.2024.112442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate machine learning predictions of passenger flow data for mass rapid transit (MRT) systems can considerably improve operational efficiency by enabling better allocation of train and human resources. However, such predictions are challenging because MRT networks have complex structures with route dependence and transfer stations. Although the static state of an MRT network has been computed in previous studies, a comprehensive understanding of an MRT network requires characterizing its dynamics. Therefore, this paper proposes a dynamic traffic network representation (DTNR) model that captures station features from historical traffic flows and geographical information of MRT stations. Furthermore, a multilevel attention network (MLAN) model is proposed to predict MRT passenger flow as a downstream task following the pretraining of the DTNR model. The experimental results of this study indicate that the developed DTNR and MLAN models can accurately predict MRT passenger flow. These models are widely applicable to different MRT systems and passenger flow situations, making them a valuable tool for transportation planners and operators.</p></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124010761\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124010761","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

对大众捷运(MRT)系统的客流数据进行准确的机器学习预测,可以更好地分配列车和人力资源,从而大大提高运营效率。然而,由于地铁网络结构复杂,与线路和换乘站相关,因此这种预测具有挑战性。虽然以往的研究已经计算出了地铁网络的静态状态,但要全面了解地铁网络,还需要对其动态特征进行分析。因此,本文提出了一种动态交通网络表示(DTNR)模型,该模型可从历史交通流量和捷运站的地理信息中捕捉车站特征。此外,本文还提出了一个多级注意力网络(MLAN)模型,在对 DTNR 模型进行预训练后,将预测地铁客流作为下游任务。本研究的实验结果表明,所开发的 DTNR 和 MLAN 模型可以准确预测地铁客流。这些模型广泛适用于不同的地铁系统和客流情况,是交通规划人员和运营商的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic traffic network representation model for improving the prediction performance of passenger flow for mass rapid transit

Accurate machine learning predictions of passenger flow data for mass rapid transit (MRT) systems can considerably improve operational efficiency by enabling better allocation of train and human resources. However, such predictions are challenging because MRT networks have complex structures with route dependence and transfer stations. Although the static state of an MRT network has been computed in previous studies, a comprehensive understanding of an MRT network requires characterizing its dynamics. Therefore, this paper proposes a dynamic traffic network representation (DTNR) model that captures station features from historical traffic flows and geographical information of MRT stations. Furthermore, a multilevel attention network (MLAN) model is proposed to predict MRT passenger flow as a downstream task following the pretraining of the DTNR model. The experimental results of this study indicate that the developed DTNR and MLAN models can accurately predict MRT passenger flow. These models are widely applicable to different MRT systems and passenger flow situations, making them a valuable tool for transportation planners and operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Local Metric NER: A new paradigm for named entity recognition from a multi-label perspective CRATI: Contrastive representation-based multimodal sound event localization and detection ALDANER: Active Learning based Data Augmentation for Named Entity Recognition Robust deadline-aware network function parallelization framework under demand uncertainty PMCN: Parallax-motion collaboration network for stereo video dehazing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1