{"title":"寻找稀疏线性互补解的粒子动力学系统算法","authors":"Feiran Wang , Jiawei Chen , Haiwu Huang , Shilong Xu","doi":"10.1016/j.asoc.2024.112156","DOIUrl":null,"url":null,"abstract":"<div><p>The Linear Complementarity Problem (LCP) offers a comprehensive modeling framework for addressing a wide range of optimization problems. In many real-world applications, finding an LCP solution with a sparse structure is often necessary. To address this problem, we introduce an innovative global optimization framework named the Particle Dynamical System Algorithm (PDSA), which consists of two components. The first component is a dynamical system (DS) inspired by the Absolute Value Equation (AVE), proven to have equilibria corresponding to LCP solutions, with additional relaxing regulators that enhance coverage rate and stability. The second component is an Adaptive Oscillated Particle Swarm Optimization (AOPSO) designed to globally enhance sparsity in LCP solutions, addressing the complexities posed by non-convex and non-smooth regulation models. Within this framework, the DS achieves optimality, while the AOPSO promotes solution sparsity. We compared our proposed DS with relaxing regulators to two classic efficient DSs, fully validating the effectiveness of our approach and underscoring the significant role of the introduced relaxing regulators in improving the convergence rate. Our newly developed variant of PSO, AOPSO, was compared with three classic and state-of-the-art variants on fourteen benchmark functions, demonstrating its competitive performance. Finally, we performed experiments on seven test examples and an application in portfolio selection, showing that the proposed PDSA algorithm surpasses other competitors in finding sparse LCP solutions.</p></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A particle dynamical system algorithm to find the sparse linear complementary solutions\",\"authors\":\"Feiran Wang , Jiawei Chen , Haiwu Huang , Shilong Xu\",\"doi\":\"10.1016/j.asoc.2024.112156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Linear Complementarity Problem (LCP) offers a comprehensive modeling framework for addressing a wide range of optimization problems. In many real-world applications, finding an LCP solution with a sparse structure is often necessary. To address this problem, we introduce an innovative global optimization framework named the Particle Dynamical System Algorithm (PDSA), which consists of two components. The first component is a dynamical system (DS) inspired by the Absolute Value Equation (AVE), proven to have equilibria corresponding to LCP solutions, with additional relaxing regulators that enhance coverage rate and stability. The second component is an Adaptive Oscillated Particle Swarm Optimization (AOPSO) designed to globally enhance sparsity in LCP solutions, addressing the complexities posed by non-convex and non-smooth regulation models. Within this framework, the DS achieves optimality, while the AOPSO promotes solution sparsity. We compared our proposed DS with relaxing regulators to two classic efficient DSs, fully validating the effectiveness of our approach and underscoring the significant role of the introduced relaxing regulators in improving the convergence rate. Our newly developed variant of PSO, AOPSO, was compared with three classic and state-of-the-art variants on fourteen benchmark functions, demonstrating its competitive performance. Finally, we performed experiments on seven test examples and an application in portfolio selection, showing that the proposed PDSA algorithm surpasses other competitors in finding sparse LCP solutions.</p></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156849462400930X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156849462400930X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A particle dynamical system algorithm to find the sparse linear complementary solutions
The Linear Complementarity Problem (LCP) offers a comprehensive modeling framework for addressing a wide range of optimization problems. In many real-world applications, finding an LCP solution with a sparse structure is often necessary. To address this problem, we introduce an innovative global optimization framework named the Particle Dynamical System Algorithm (PDSA), which consists of two components. The first component is a dynamical system (DS) inspired by the Absolute Value Equation (AVE), proven to have equilibria corresponding to LCP solutions, with additional relaxing regulators that enhance coverage rate and stability. The second component is an Adaptive Oscillated Particle Swarm Optimization (AOPSO) designed to globally enhance sparsity in LCP solutions, addressing the complexities posed by non-convex and non-smooth regulation models. Within this framework, the DS achieves optimality, while the AOPSO promotes solution sparsity. We compared our proposed DS with relaxing regulators to two classic efficient DSs, fully validating the effectiveness of our approach and underscoring the significant role of the introduced relaxing regulators in improving the convergence rate. Our newly developed variant of PSO, AOPSO, was compared with three classic and state-of-the-art variants on fourteen benchmark functions, demonstrating its competitive performance. Finally, we performed experiments on seven test examples and an application in portfolio selection, showing that the proposed PDSA algorithm surpasses other competitors in finding sparse LCP solutions.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.