我们是否正在穿越格里斯伯格百年周期的最低点?利用不同的太阳活动代用指标和光谱分析,基于多变量机器学习预测太阳黑子数量

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-14 DOI:10.1016/j.asr.2024.08.033
José-Víctor Rodríguez , Víctor Manuel Sánchez Carrasco , Ignacio Rodríguez-Rodríguez , Alejandro Jesús Pérez Aparicio , José Manuel Vaquero
{"title":"我们是否正在穿越格里斯伯格百年周期的最低点?利用不同的太阳活动代用指标和光谱分析,基于多变量机器学习预测太阳黑子数量","authors":"José-Víctor Rodríguez ,&nbsp;Víctor Manuel Sánchez Carrasco ,&nbsp;Ignacio Rodríguez-Rodríguez ,&nbsp;Alejandro Jesús Pérez Aparicio ,&nbsp;José Manuel Vaquero","doi":"10.1016/j.asr.2024.08.033","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a new method for predicting the solar cycle in terms of the sunspot number (S<sub>N</sub>) based on multivariate machine learning algorithms, various proxies of solar activity, and the spectral analysis of all considered time series via the fast Fourier transform (through the latter we identify periodicities with which to lag these series and thus generate new attributes –predictors– for incorporation in the prediction model). This combination of three different techniques in a single method is expected to enhance the accuracy and reliability of the solar activity prediction models developed to date. Thus, predictive results for S<sub>N</sub> are presented for Solar Cycles 25 (the current one) and 26 (using the 13-month smoothed S<sub>N</sub>, version 2) up until January 2038, yielding maximum values of 134.2 (in June 2024) and 115.4 (in May 2034), respectively, with a root mean squared error (RMSE) of 9.8. These results imply, on the one hand, a maximum of Cycle 25 below the average and, on the other hand, a lower peak than the preceding ones for Cycle 26, suggesting that Solar Cycles 24, 25, and 26 are part of a minimum of the centennial Gleissberg cycle, as occurred with Cycles 12, 13, and 14 in the final years of the 19th century and the early 20th century.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0273117724008524/pdfft?md5=f3b6cbb55c005f26a53413d76da7d6f8&pid=1-s2.0-S0273117724008524-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Are we crossing a minimum of the Gleissberg centennial cycle? Multivariate machine learning-based prediction of the sunspot number using different proxies of solar activity and spectral analysis\",\"authors\":\"José-Víctor Rodríguez ,&nbsp;Víctor Manuel Sánchez Carrasco ,&nbsp;Ignacio Rodríguez-Rodríguez ,&nbsp;Alejandro Jesús Pérez Aparicio ,&nbsp;José Manuel Vaquero\",\"doi\":\"10.1016/j.asr.2024.08.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a new method for predicting the solar cycle in terms of the sunspot number (S<sub>N</sub>) based on multivariate machine learning algorithms, various proxies of solar activity, and the spectral analysis of all considered time series via the fast Fourier transform (through the latter we identify periodicities with which to lag these series and thus generate new attributes –predictors– for incorporation in the prediction model). This combination of three different techniques in a single method is expected to enhance the accuracy and reliability of the solar activity prediction models developed to date. Thus, predictive results for S<sub>N</sub> are presented for Solar Cycles 25 (the current one) and 26 (using the 13-month smoothed S<sub>N</sub>, version 2) up until January 2038, yielding maximum values of 134.2 (in June 2024) and 115.4 (in May 2034), respectively, with a root mean squared error (RMSE) of 9.8. These results imply, on the one hand, a maximum of Cycle 25 below the average and, on the other hand, a lower peak than the preceding ones for Cycle 26, suggesting that Solar Cycles 24, 25, and 26 are part of a minimum of the centennial Gleissberg cycle, as occurred with Cycles 12, 13, and 14 in the final years of the 19th century and the early 20th century.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0273117724008524/pdfft?md5=f3b6cbb55c005f26a53413d76da7d6f8&pid=1-s2.0-S0273117724008524-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117724008524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724008524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种根据太阳黑子数(SN)预测太阳活动周期的新方法,该方法基于多元机器学习算法、各种太阳活动代用指标以及通过快速傅立叶变换对所有考虑的时间序列进行的频谱分析(通过后者,我们确定了滞后于这些序列的周期性,从而生成新的属性--预测因子--以纳入预测模型)。这种将三种不同技术结合在一起的方法有望提高迄今为止开发的太阳活动预测模型的准确性和可靠性。因此,对太阳活动的预测结果显示,太阳活动周期 25(当前的太阳活动周期)和 26(使用 13 个月平滑太阳活动周期,版本 2)直至 2038 年 1 月的最大值分别为 134.2(2024 年 6 月)和 115.4(2034 年 5 月),均方根误差(RMSE)为 9.8。这些结果一方面意味着周期 25 的最大值低于平均值,另一方面意味着周期 26 的峰值低于之前的峰值,这表明太阳周期 24、25 和 26 是百年格来斯伯格周期最小值的一部分,就像 19 世纪最后几年和 20 世纪初周期 12、13 和 14 一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Are we crossing a minimum of the Gleissberg centennial cycle? Multivariate machine learning-based prediction of the sunspot number using different proxies of solar activity and spectral analysis

We propose a new method for predicting the solar cycle in terms of the sunspot number (SN) based on multivariate machine learning algorithms, various proxies of solar activity, and the spectral analysis of all considered time series via the fast Fourier transform (through the latter we identify periodicities with which to lag these series and thus generate new attributes –predictors– for incorporation in the prediction model). This combination of three different techniques in a single method is expected to enhance the accuracy and reliability of the solar activity prediction models developed to date. Thus, predictive results for SN are presented for Solar Cycles 25 (the current one) and 26 (using the 13-month smoothed SN, version 2) up until January 2038, yielding maximum values of 134.2 (in June 2024) and 115.4 (in May 2034), respectively, with a root mean squared error (RMSE) of 9.8. These results imply, on the one hand, a maximum of Cycle 25 below the average and, on the other hand, a lower peak than the preceding ones for Cycle 26, suggesting that Solar Cycles 24, 25, and 26 are part of a minimum of the centennial Gleissberg cycle, as occurred with Cycles 12, 13, and 14 in the final years of the 19th century and the early 20th century.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1