{"title":"外部触发给药系统","authors":"Huiyang Hu , Prabhakar Busa , Yue Zhao , Chao Zhao","doi":"10.1016/j.smaim.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Externally triggered drug delivery systems empower patients or healthcare providers to utilize external stimuli to initiate drug release from implanted systems. This approach holds significant potential for clinical disease management, offering appealing features like enhanced patient adherence through the elimination of needles and medication reminders. Additionally, it facilitates personalized medicine by granting patients control over the timing, dosage, and duration of drug release. Moreover, it enables precise drug delivery to targeted locations where external stimuli are applied. Advances in materials science, nanotechnology, chemistry, and biology have been pivotal in driving the development of these systems. This review presents an overview of the progress in research on drug release systems responsive to external stimuli, such as light, ultrasound, magnetic fields, and temperature. It discusses the construction strategies of externally triggered drug delivery systems, the mechanisms governing triggered drug release, and their applications in disease management.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 3","pages":"Pages 386-408"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259018342400036X/pdfft?md5=ee01046e5097b41b02ce327cb03cf82e&pid=1-s2.0-S259018342400036X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Externally triggered drug delivery systems\",\"authors\":\"Huiyang Hu , Prabhakar Busa , Yue Zhao , Chao Zhao\",\"doi\":\"10.1016/j.smaim.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Externally triggered drug delivery systems empower patients or healthcare providers to utilize external stimuli to initiate drug release from implanted systems. This approach holds significant potential for clinical disease management, offering appealing features like enhanced patient adherence through the elimination of needles and medication reminders. Additionally, it facilitates personalized medicine by granting patients control over the timing, dosage, and duration of drug release. Moreover, it enables precise drug delivery to targeted locations where external stimuli are applied. Advances in materials science, nanotechnology, chemistry, and biology have been pivotal in driving the development of these systems. This review presents an overview of the progress in research on drug release systems responsive to external stimuli, such as light, ultrasound, magnetic fields, and temperature. It discusses the construction strategies of externally triggered drug delivery systems, the mechanisms governing triggered drug release, and their applications in disease management.</p></div>\",\"PeriodicalId\":22019,\"journal\":{\"name\":\"Smart Materials in Medicine\",\"volume\":\"5 3\",\"pages\":\"Pages 386-408\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259018342400036X/pdfft?md5=ee01046e5097b41b02ce327cb03cf82e&pid=1-s2.0-S259018342400036X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259018342400036X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259018342400036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Externally triggered drug delivery systems empower patients or healthcare providers to utilize external stimuli to initiate drug release from implanted systems. This approach holds significant potential for clinical disease management, offering appealing features like enhanced patient adherence through the elimination of needles and medication reminders. Additionally, it facilitates personalized medicine by granting patients control over the timing, dosage, and duration of drug release. Moreover, it enables precise drug delivery to targeted locations where external stimuli are applied. Advances in materials science, nanotechnology, chemistry, and biology have been pivotal in driving the development of these systems. This review presents an overview of the progress in research on drug release systems responsive to external stimuli, such as light, ultrasound, magnetic fields, and temperature. It discusses the construction strategies of externally triggered drug delivery systems, the mechanisms governing triggered drug release, and their applications in disease management.