{"title":"使用贝叶斯抽样法估计违约分布情况下的企业损失","authors":"Xiaofei Zhang, Xinlei Zhao","doi":"10.1016/j.jempfin.2024.101540","DOIUrl":null,"url":null,"abstract":"<div><p>We use Markov chain Monte Carlo (MCMC) sampling to draw model coefficients to generate LGD distributions. We find that applying this Bayesian method on a sophisticated model, such as the zero-one-inflated beta (ZOIB) model, that accounts for the bi-modal distribution of the LGDs can generate LGD distributions that mimic the observed distributions well. By contrast, applying this Bayesian sampling approach on a simple model such as Tobit cannot capture the bi-modal LGD distributions accurately. Finally, we argue that this Bayesian sampling approach to generate LGD distributions is better fit for the stress testing purpose than the typical approach to estimate LGD model coefficients and then stress the macro variables. The latter approach yields stressed LGDs that may not be conservative enough, even if the macro variables are stressed to their worst historical values.</p></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"79 ","pages":"Article 101540"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using the Bayesian sampling method to estimate corporate loss given default distribution\",\"authors\":\"Xiaofei Zhang, Xinlei Zhao\",\"doi\":\"10.1016/j.jempfin.2024.101540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use Markov chain Monte Carlo (MCMC) sampling to draw model coefficients to generate LGD distributions. We find that applying this Bayesian method on a sophisticated model, such as the zero-one-inflated beta (ZOIB) model, that accounts for the bi-modal distribution of the LGDs can generate LGD distributions that mimic the observed distributions well. By contrast, applying this Bayesian sampling approach on a simple model such as Tobit cannot capture the bi-modal LGD distributions accurately. Finally, we argue that this Bayesian sampling approach to generate LGD distributions is better fit for the stress testing purpose than the typical approach to estimate LGD model coefficients and then stress the macro variables. The latter approach yields stressed LGDs that may not be conservative enough, even if the macro variables are stressed to their worst historical values.</p></div>\",\"PeriodicalId\":15704,\"journal\":{\"name\":\"Journal of Empirical Finance\",\"volume\":\"79 \",\"pages\":\"Article 101540\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Empirical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927539824000744\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539824000744","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Using the Bayesian sampling method to estimate corporate loss given default distribution
We use Markov chain Monte Carlo (MCMC) sampling to draw model coefficients to generate LGD distributions. We find that applying this Bayesian method on a sophisticated model, such as the zero-one-inflated beta (ZOIB) model, that accounts for the bi-modal distribution of the LGDs can generate LGD distributions that mimic the observed distributions well. By contrast, applying this Bayesian sampling approach on a simple model such as Tobit cannot capture the bi-modal LGD distributions accurately. Finally, we argue that this Bayesian sampling approach to generate LGD distributions is better fit for the stress testing purpose than the typical approach to estimate LGD model coefficients and then stress the macro variables. The latter approach yields stressed LGDs that may not be conservative enough, even if the macro variables are stressed to their worst historical values.
期刊介绍:
The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.