探索环保型新型电荷传输材料,提高锡基过氧化物太阳能电池的性能

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-08-30 DOI:10.1016/j.ijleo.2024.172012
Muhammad Zulqarnain Abbasi , Anees Ur Rehman , Zeeshan Khan , Jingwei Zhang
{"title":"探索环保型新型电荷传输材料,提高锡基过氧化物太阳能电池的性能","authors":"Muhammad Zulqarnain Abbasi ,&nbsp;Anees Ur Rehman ,&nbsp;Zeeshan Khan ,&nbsp;Jingwei Zhang","doi":"10.1016/j.ijleo.2024.172012","DOIUrl":null,"url":null,"abstract":"<div><p>This pioneering simulation study explores the potential of perovskite materials, particularly the non-toxic methyl ammonium tin iodide (MASnI<sub>3</sub>), in solar cell technology. The investigation focuses on eco-friendly, solution-processed compounds—specifically, WO<sub>3</sub> and In<sub>2</sub>S<sub>3</sub> as Electron Transport Layers (ETL) and MoO<sub>3</sub> and WSe<sub>2</sub> as Hole Transport Layer (HTL)—to develop planar n-i-p MASnI<sub>3</sub> perovskite solar cell (PSC) devices. WO<sub>3</sub> is chosen for its solution processing and high electron mobility, while In<sub>2</sub>S<sub>3</sub> offers n-type properties, superior carrier mobility, non-toxicity, and thermal durability. MoO<sub>3</sub> and WSe<sub>2</sub> are selected as HTLs for their efficient charge transport capabilities. Utilizing the solar cell capacitance simulator (SCAPS-1D) software, the study systematically evaluates alternative charge-selective materials, considering various parameters such as thickness (0.1 µm to 1.5 µm for absorber and 0.1 µm to 0.35 µm for CTLs), doping concentration (3.2E10 to 3.2E16 for absorber and E16 to E20 for CTLs), defect density, and energy band offset for MASnI<sub>3</sub> PSCs. Four distinct n-i-p device structures are optimized, yielding impressive PCE improvements ranging from 14.63 % to 25.34 %, a significant 3 % enhancement compared to initial results. Notably, the WO<sub>3</sub>/MASnI<sub>3</sub>/WSe<sub>2</sub> configuration exhibits limitations in electrical performance, while the other optimized structures demonstrate substantial efficiency gains. Further analysis investigates the impact of reflecting coatings (10 % to 90 %), varying contact work functions (5.2–5.8 eV), and temperature (300–400 K) on photovoltaic parameters. Critical factors including energy band offset, recombination current profile, and built-in potential, are meticulously examined, laying the groundwork for advanced PSC implementation. The study culminates in the In<sub>2</sub>S<sub>3</sub>/MASnI<sub>3</sub>/MoO<sub>3</sub> device configuration, which achieves a peak efficiency of 25.34 %, showcasing superior thermal stability and an enhanced fill factor, thus propelling all-inorganic PSCs towards practical implementation.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"315 ","pages":"Article 172012"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring eco-friendly novel charge transport materials for enhanced performance of tin based perovskite solar cell\",\"authors\":\"Muhammad Zulqarnain Abbasi ,&nbsp;Anees Ur Rehman ,&nbsp;Zeeshan Khan ,&nbsp;Jingwei Zhang\",\"doi\":\"10.1016/j.ijleo.2024.172012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This pioneering simulation study explores the potential of perovskite materials, particularly the non-toxic methyl ammonium tin iodide (MASnI<sub>3</sub>), in solar cell technology. The investigation focuses on eco-friendly, solution-processed compounds—specifically, WO<sub>3</sub> and In<sub>2</sub>S<sub>3</sub> as Electron Transport Layers (ETL) and MoO<sub>3</sub> and WSe<sub>2</sub> as Hole Transport Layer (HTL)—to develop planar n-i-p MASnI<sub>3</sub> perovskite solar cell (PSC) devices. WO<sub>3</sub> is chosen for its solution processing and high electron mobility, while In<sub>2</sub>S<sub>3</sub> offers n-type properties, superior carrier mobility, non-toxicity, and thermal durability. MoO<sub>3</sub> and WSe<sub>2</sub> are selected as HTLs for their efficient charge transport capabilities. Utilizing the solar cell capacitance simulator (SCAPS-1D) software, the study systematically evaluates alternative charge-selective materials, considering various parameters such as thickness (0.1 µm to 1.5 µm for absorber and 0.1 µm to 0.35 µm for CTLs), doping concentration (3.2E10 to 3.2E16 for absorber and E16 to E20 for CTLs), defect density, and energy band offset for MASnI<sub>3</sub> PSCs. Four distinct n-i-p device structures are optimized, yielding impressive PCE improvements ranging from 14.63 % to 25.34 %, a significant 3 % enhancement compared to initial results. Notably, the WO<sub>3</sub>/MASnI<sub>3</sub>/WSe<sub>2</sub> configuration exhibits limitations in electrical performance, while the other optimized structures demonstrate substantial efficiency gains. Further analysis investigates the impact of reflecting coatings (10 % to 90 %), varying contact work functions (5.2–5.8 eV), and temperature (300–400 K) on photovoltaic parameters. Critical factors including energy band offset, recombination current profile, and built-in potential, are meticulously examined, laying the groundwork for advanced PSC implementation. The study culminates in the In<sub>2</sub>S<sub>3</sub>/MASnI<sub>3</sub>/MoO<sub>3</sub> device configuration, which achieves a peak efficiency of 25.34 %, showcasing superior thermal stability and an enhanced fill factor, thus propelling all-inorganic PSCs towards practical implementation.</p></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"315 \",\"pages\":\"Article 172012\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003040262400411X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003040262400411X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

这项开创性的模拟研究探索了透辉石材料,特别是无毒的甲基碘化锡铵(MASnI3)在太阳能电池技术中的应用潜力。研究的重点是生态友好型溶液处理化合物--特别是作为电子传输层(ETL)的 WO3 和 In2S3 以及作为空穴传输层(HTL)的 MoO3 和 WSe2--以开发平面 ni-p MASnI3 包晶体太阳能电池(PSC)器件。选择 WO3 是因为其溶液加工性和高电子迁移率,而 In2S3 则具有 n 型特性、优异的载流子迁移率、无毒性和热耐久性。选择 MoO3 和 WSe2 作为 HTL 是因为它们具有高效的电荷传输能力。这项研究利用太阳能电池电容模拟器(SCAPS-1D)软件,系统地评估了替代电荷选择性材料,并考虑了各种参数,如 MASnI3 PSCs 的厚度(吸收体为 0.1 微米至 1.5 微米,CTL 为 0.1 微米至 0.35 微米)、掺杂浓度(吸收体为 3.2E10 至 3.2E16,CTL 为 E16 至 E20)、缺陷密度和能带偏移。对四种不同的 ni-i-p 器件结构进行了优化,使 PCE 显著提高了 14.63% 至 25.34%,与最初的结果相比提高了 3%。值得注意的是,WO3/MASnI3/WSe2 配置在电气性能方面表现出局限性,而其他优化结构则表现出大幅增效。进一步分析研究了反射涂层(10% 至 90%)、不同的接触功函数(5.2-5.8 eV)和温度(300-400 K)对光伏参数的影响。对能带偏移、重组电流曲线和内置电势等关键因素进行了细致研究,为先进的 PSC 实施奠定了基础。研究的最终成果是 In2S3/MASnI3/MoO3 器件配置,其峰值效率达到 25.34%,展示了卓越的热稳定性和更高的填充因子,从而推动了全无机 PSC 的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring eco-friendly novel charge transport materials for enhanced performance of tin based perovskite solar cell

This pioneering simulation study explores the potential of perovskite materials, particularly the non-toxic methyl ammonium tin iodide (MASnI3), in solar cell technology. The investigation focuses on eco-friendly, solution-processed compounds—specifically, WO3 and In2S3 as Electron Transport Layers (ETL) and MoO3 and WSe2 as Hole Transport Layer (HTL)—to develop planar n-i-p MASnI3 perovskite solar cell (PSC) devices. WO3 is chosen for its solution processing and high electron mobility, while In2S3 offers n-type properties, superior carrier mobility, non-toxicity, and thermal durability. MoO3 and WSe2 are selected as HTLs for their efficient charge transport capabilities. Utilizing the solar cell capacitance simulator (SCAPS-1D) software, the study systematically evaluates alternative charge-selective materials, considering various parameters such as thickness (0.1 µm to 1.5 µm for absorber and 0.1 µm to 0.35 µm for CTLs), doping concentration (3.2E10 to 3.2E16 for absorber and E16 to E20 for CTLs), defect density, and energy band offset for MASnI3 PSCs. Four distinct n-i-p device structures are optimized, yielding impressive PCE improvements ranging from 14.63 % to 25.34 %, a significant 3 % enhancement compared to initial results. Notably, the WO3/MASnI3/WSe2 configuration exhibits limitations in electrical performance, while the other optimized structures demonstrate substantial efficiency gains. Further analysis investigates the impact of reflecting coatings (10 % to 90 %), varying contact work functions (5.2–5.8 eV), and temperature (300–400 K) on photovoltaic parameters. Critical factors including energy band offset, recombination current profile, and built-in potential, are meticulously examined, laying the groundwork for advanced PSC implementation. The study culminates in the In2S3/MASnI3/MoO3 device configuration, which achieves a peak efficiency of 25.34 %, showcasing superior thermal stability and an enhanced fill factor, thus propelling all-inorganic PSCs towards practical implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Weak mode locking dynamics in a thulium-doped fiber laser Design of cascaded diffractive optical elements generating different intensity distributions at several operating wavelengths Whispery gallery mode plasmonic biosensor based on intensifying graphene layer Chemometric advances in COD analysis: Overcoming turbidity interference with a Hybrid PLS-ANN approach A closely spaced dual-band dual-sense linear-to-circular polarization converter for X-band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1