克瑞斯林折纸管在冲击载荷下的能量吸收性能

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-08-29 DOI:10.1016/j.ijmecsci.2024.109682
{"title":"克瑞斯林折纸管在冲击载荷下的能量吸收性能","authors":"","doi":"10.1016/j.ijmecsci.2024.109682","DOIUrl":null,"url":null,"abstract":"<div><p>Thin-walled tubes with an origami design, particularly the Kresling pattern, exhibit superior mechanical properties compared to traditional straight tubes, including a more constant reaction force and predictable deformation. Despite their potential, research on these patterned structures, especially when made from structural materials like metal and tested under dynamic conditions, remains limited. This study investigates the compressive performance of aluminium Kresling origami tubes (KOTs) under quasi-static and impact scenarios (up to 30 m/s) in the axial direction. Results show that increased impact velocity leads to more localized deformation and improved energy absorption metrics. A validated numerical model was used to analyze the influence of hierarchy rotation, sector angles, and loading velocity on mechanical performance. Comparisons with Miura-ori patterned tubes and hexagonal cross-section straight tubes of the same relative density revealed that KOTs have superior energy absorption performance. An empirical model was developed to effectively predict the mean crushing stress of KOTs. In addition. a generative machine learning model was introduced to synthesize a large dataset from initial simulations, providing an efficient and reliable solution for energy absorption analysis in origami structures, addressing the challenge of limited specimen datasets.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy absorption performance of Kresling origami tubes under impact loading\",\"authors\":\"\",\"doi\":\"10.1016/j.ijmecsci.2024.109682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thin-walled tubes with an origami design, particularly the Kresling pattern, exhibit superior mechanical properties compared to traditional straight tubes, including a more constant reaction force and predictable deformation. Despite their potential, research on these patterned structures, especially when made from structural materials like metal and tested under dynamic conditions, remains limited. This study investigates the compressive performance of aluminium Kresling origami tubes (KOTs) under quasi-static and impact scenarios (up to 30 m/s) in the axial direction. Results show that increased impact velocity leads to more localized deformation and improved energy absorption metrics. A validated numerical model was used to analyze the influence of hierarchy rotation, sector angles, and loading velocity on mechanical performance. Comparisons with Miura-ori patterned tubes and hexagonal cross-section straight tubes of the same relative density revealed that KOTs have superior energy absorption performance. An empirical model was developed to effectively predict the mean crushing stress of KOTs. In addition. a generative machine learning model was introduced to synthesize a large dataset from initial simulations, providing an efficient and reliable solution for energy absorption analysis in origami structures, addressing the challenge of limited specimen datasets.</p></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740324007239\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324007239","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

与传统的直管相比,具有折纸设计的薄壁管,特别是克雷斯林图案,表现出更优越的机械性能,包括更恒定的反作用力和可预测的变形。尽管这些图案结构具有潜力,但对其进行的研究仍然有限,尤其是用金属等结构材料制成并在动态条件下进行测试时。本研究调查了铝制克瑞斯林折纸管(KOT)在准静态和轴向冲击(最高 30 米/秒)情况下的抗压性能。研究结果表明,冲击速度的增加会导致更多的局部变形,并改善能量吸收指标。经过验证的数值模型用于分析层次旋转、扇形角和加载速度对机械性能的影响。与具有相同相对密度的三浦织纹管和六边形截面直管进行比较后发现,KOT 具有更优越的能量吸收性能。研究建立了一个经验模型,可有效预测 KOT 的平均压溃应力。此外,还引入了一个生成式机器学习模型,从初始模拟中合成一个大型数据集,为折纸结构的能量吸收分析提供了一个高效可靠的解决方案,解决了试样数据集有限的难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy absorption performance of Kresling origami tubes under impact loading

Thin-walled tubes with an origami design, particularly the Kresling pattern, exhibit superior mechanical properties compared to traditional straight tubes, including a more constant reaction force and predictable deformation. Despite their potential, research on these patterned structures, especially when made from structural materials like metal and tested under dynamic conditions, remains limited. This study investigates the compressive performance of aluminium Kresling origami tubes (KOTs) under quasi-static and impact scenarios (up to 30 m/s) in the axial direction. Results show that increased impact velocity leads to more localized deformation and improved energy absorption metrics. A validated numerical model was used to analyze the influence of hierarchy rotation, sector angles, and loading velocity on mechanical performance. Comparisons with Miura-ori patterned tubes and hexagonal cross-section straight tubes of the same relative density revealed that KOTs have superior energy absorption performance. An empirical model was developed to effectively predict the mean crushing stress of KOTs. In addition. a generative machine learning model was introduced to synthesize a large dataset from initial simulations, providing an efficient and reliable solution for energy absorption analysis in origami structures, addressing the challenge of limited specimen datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Nonlinear dynamic behavior of a rotor-bearing system considering time-varying misalignment Energy absorption of the kirigami-inspired pyramid foldcore sandwich structures under low-velocity impact Modeling the coupled bubble-arc-droplet evolution in underwater flux-cored arc welding A GAN-based stepwise full-field mechanical prediction model for architected metamaterials Backward motion suppression in space-constrained piezoelectric pipeline robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1