Jinlan Xu , Mengzhen Gao , Jianan Dai , Yikai Li , Manman Wang , Huan Li , Chuanyu Liu
{"title":"在土壤中进行 Fenton 预氧化后,通过激活类芽孢杆菌微生物长效降解长链烷烃","authors":"Jinlan Xu , Mengzhen Gao , Jianan Dai , Yikai Li , Manman Wang , Huan Li , Chuanyu Liu","doi":"10.1016/j.bej.2024.109481","DOIUrl":null,"url":null,"abstract":"<div><p>To explore the effects and mechanisms of long-lasting degradation of long-chain alkanes (C<sub>25</sub>-C<sub>30</sub>) in petroleum-contaminated soil, a solid iron catalyst prepared by adding different proportions of (5 % and 15 % (w/w)) chitosan (CS) was used for Fenton pre-oxidation experiment. Bioremediation experiments were performed for 100 days after pre-oxidation. The results indicated that the degradation for long-chain alkanes and Total Petroleum Hydrocarbons (TPH) were 76.95 % and 76.89 %, respectively. Furthermore, long-lasting degradation of long-chain alkanes was achieved by activating <em>Bacillus</em>-like microbes. In each biodegradation cycle, the long-chain alkanes degradation in the active control group increased by 77.39 mg/kg, 76.74 mg/kg, 36.88 mg/kg, and 76.51 mg/kg compared to the previous cycle. Besides, the half-life of long-chain alkanes was 131 days shorter in the active control group than in the inactive control group. Higher microbial enzyme activity for degrading long-chain alkanes was observed after Fenton pre-oxidation because the expression of alkane metabolism genes was activated by the high consumption of dissolved organic carbon. Finally, the dominant bacterial genera in the active control group shifted predominantly to <em>Paenibacillus</em> (13.26 %), <em>Acinetobacter</em> (8.02 %), and <em>Microbacterium</em> (17.64 %). Therefore, this study possesses significant engineering application value.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"211 ","pages":"Article 109481"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-lasting degradation of long-chain alkanes through activating Bacillus-like microbes after Fenton pre-oxidation in soil\",\"authors\":\"Jinlan Xu , Mengzhen Gao , Jianan Dai , Yikai Li , Manman Wang , Huan Li , Chuanyu Liu\",\"doi\":\"10.1016/j.bej.2024.109481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To explore the effects and mechanisms of long-lasting degradation of long-chain alkanes (C<sub>25</sub>-C<sub>30</sub>) in petroleum-contaminated soil, a solid iron catalyst prepared by adding different proportions of (5 % and 15 % (w/w)) chitosan (CS) was used for Fenton pre-oxidation experiment. Bioremediation experiments were performed for 100 days after pre-oxidation. The results indicated that the degradation for long-chain alkanes and Total Petroleum Hydrocarbons (TPH) were 76.95 % and 76.89 %, respectively. Furthermore, long-lasting degradation of long-chain alkanes was achieved by activating <em>Bacillus</em>-like microbes. In each biodegradation cycle, the long-chain alkanes degradation in the active control group increased by 77.39 mg/kg, 76.74 mg/kg, 36.88 mg/kg, and 76.51 mg/kg compared to the previous cycle. Besides, the half-life of long-chain alkanes was 131 days shorter in the active control group than in the inactive control group. Higher microbial enzyme activity for degrading long-chain alkanes was observed after Fenton pre-oxidation because the expression of alkane metabolism genes was activated by the high consumption of dissolved organic carbon. Finally, the dominant bacterial genera in the active control group shifted predominantly to <em>Paenibacillus</em> (13.26 %), <em>Acinetobacter</em> (8.02 %), and <em>Microbacterium</em> (17.64 %). Therefore, this study possesses significant engineering application value.</p></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"211 \",\"pages\":\"Article 109481\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24002687\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002687","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Long-lasting degradation of long-chain alkanes through activating Bacillus-like microbes after Fenton pre-oxidation in soil
To explore the effects and mechanisms of long-lasting degradation of long-chain alkanes (C25-C30) in petroleum-contaminated soil, a solid iron catalyst prepared by adding different proportions of (5 % and 15 % (w/w)) chitosan (CS) was used for Fenton pre-oxidation experiment. Bioremediation experiments were performed for 100 days after pre-oxidation. The results indicated that the degradation for long-chain alkanes and Total Petroleum Hydrocarbons (TPH) were 76.95 % and 76.89 %, respectively. Furthermore, long-lasting degradation of long-chain alkanes was achieved by activating Bacillus-like microbes. In each biodegradation cycle, the long-chain alkanes degradation in the active control group increased by 77.39 mg/kg, 76.74 mg/kg, 36.88 mg/kg, and 76.51 mg/kg compared to the previous cycle. Besides, the half-life of long-chain alkanes was 131 days shorter in the active control group than in the inactive control group. Higher microbial enzyme activity for degrading long-chain alkanes was observed after Fenton pre-oxidation because the expression of alkane metabolism genes was activated by the high consumption of dissolved organic carbon. Finally, the dominant bacterial genera in the active control group shifted predominantly to Paenibacillus (13.26 %), Acinetobacter (8.02 %), and Microbacterium (17.64 %). Therefore, this study possesses significant engineering application value.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.