{"title":"莫里斯-索恩虫洞度量中的耗散引力坍缩动力学:一种情景--几种结果","authors":"","doi":"10.1016/j.aop.2024.169789","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the dynamical Morris–Thorne metric with radiating heat flow. By matching the interior Morris–Thorne metric with an exterior Vaidya metric we trace out the collapse solutions for the corresponding spherically symmetric inhomogeneous distribution of matter. The solutions obtained are broadly of four different types, giving different end state dynamics. Corresponding to three of the solutions we elaborate the collapsing dynamics of the Morris–Thorne type evolving wormhole. We show that for all those cases where collapse upto zero proper volume is obtained in finite time, the ensuing singularity is always a black hole type. However our solutions can also show other end states, like oscillating wormhole-black hole pair or infinite time contracting universe or a conformal past matter dominated universe. In all the cases we have worked out the background dynamics and physics of the solution. All our solutions are illustrated with appropriate graphical descriptions.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of dissipative gravitational collapse in the Morris–Thorne wormhole metric: One scenario - several outcomes\",\"authors\":\"\",\"doi\":\"10.1016/j.aop.2024.169789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the dynamical Morris–Thorne metric with radiating heat flow. By matching the interior Morris–Thorne metric with an exterior Vaidya metric we trace out the collapse solutions for the corresponding spherically symmetric inhomogeneous distribution of matter. The solutions obtained are broadly of four different types, giving different end state dynamics. Corresponding to three of the solutions we elaborate the collapsing dynamics of the Morris–Thorne type evolving wormhole. We show that for all those cases where collapse upto zero proper volume is obtained in finite time, the ensuing singularity is always a black hole type. However our solutions can also show other end states, like oscillating wormhole-black hole pair or infinite time contracting universe or a conformal past matter dominated universe. In all the cases we have worked out the background dynamics and physics of the solution. All our solutions are illustrated with appropriate graphical descriptions.</p></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624001969\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001969","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamics of dissipative gravitational collapse in the Morris–Thorne wormhole metric: One scenario - several outcomes
We consider the dynamical Morris–Thorne metric with radiating heat flow. By matching the interior Morris–Thorne metric with an exterior Vaidya metric we trace out the collapse solutions for the corresponding spherically symmetric inhomogeneous distribution of matter. The solutions obtained are broadly of four different types, giving different end state dynamics. Corresponding to three of the solutions we elaborate the collapsing dynamics of the Morris–Thorne type evolving wormhole. We show that for all those cases where collapse upto zero proper volume is obtained in finite time, the ensuing singularity is always a black hole type. However our solutions can also show other end states, like oscillating wormhole-black hole pair or infinite time contracting universe or a conformal past matter dominated universe. In all the cases we have worked out the background dynamics and physics of the solution. All our solutions are illustrated with appropriate graphical descriptions.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.