{"title":"在 f(R,Lm) 引力下具有 GUP 修正卡西米尔效应的可穿越虫洞","authors":"","doi":"10.1016/j.aop.2024.169788","DOIUrl":null,"url":null,"abstract":"<div><p>Traversable wormholes require exotic matter for stability, challenging their existence. Quantum mechanics offers a potential solution via the Casimir effect, which generates negative energy densities. In this study, we examine this interaction using two maximally localized quantum state models: the Kempf, Mangano, and Mann (KMM) model and the Detournay, Gabriel, and Spindel (DGS) model, incorporating Generalized Uncertainty Principle (GUP) corrections. We start by deriving the field equations for a generic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> function, assuming a static and spherically symmetric Morris-Thorne wormhole metric. We then consider two specific gravity models: a linear model <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>α</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> and a nonlinear model <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msubsup></mrow></math></span>, where <span><math><mi>α</mi></math></span> and <span><math><mi>n</mi></math></span> are free parameters. Using the GUP-corrected Casimir effect, we derive the shape functions for these wormholes and investigate their existence. Next, we analyze the obtained wormhole solutions for each scenario, assessing the energy conditions at the wormhole throat with radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Our findings indicate that, for some arbitrary quantities, classical energy conditions are violated at the wormhole throat, highlighting the significant influence of GUP parameters on the geometry and physical properties of wormholes. Additionally, we explore the behavior of the equation of state (EoS) for each model. We further investigate the stability of the KMM and DGS wormhole solutions by applying the Tolman–Oppenheimer–Volkoff (TOV) equation. Finally, we use the volume integral quantifier to determine the amount of exotic matter required near the wormhole throat for both models, providing a comprehensive understanding of the exotic matter distribution necessary for maintaining wormhole stability.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traversable wormhole with GUP corrected Casimir effect in f(R,Lm) gravity\",\"authors\":\"\",\"doi\":\"10.1016/j.aop.2024.169788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traversable wormholes require exotic matter for stability, challenging their existence. Quantum mechanics offers a potential solution via the Casimir effect, which generates negative energy densities. In this study, we examine this interaction using two maximally localized quantum state models: the Kempf, Mangano, and Mann (KMM) model and the Detournay, Gabriel, and Spindel (DGS) model, incorporating Generalized Uncertainty Principle (GUP) corrections. We start by deriving the field equations for a generic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> function, assuming a static and spherically symmetric Morris-Thorne wormhole metric. We then consider two specific gravity models: a linear model <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>α</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> and a nonlinear model <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msubsup></mrow></math></span>, where <span><math><mi>α</mi></math></span> and <span><math><mi>n</mi></math></span> are free parameters. Using the GUP-corrected Casimir effect, we derive the shape functions for these wormholes and investigate their existence. Next, we analyze the obtained wormhole solutions for each scenario, assessing the energy conditions at the wormhole throat with radius <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Our findings indicate that, for some arbitrary quantities, classical energy conditions are violated at the wormhole throat, highlighting the significant influence of GUP parameters on the geometry and physical properties of wormholes. Additionally, we explore the behavior of the equation of state (EoS) for each model. We further investigate the stability of the KMM and DGS wormhole solutions by applying the Tolman–Oppenheimer–Volkoff (TOV) equation. Finally, we use the volume integral quantifier to determine the amount of exotic matter required near the wormhole throat for both models, providing a comprehensive understanding of the exotic matter distribution necessary for maintaining wormhole stability.</p></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624001957\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001957","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Traversable wormhole with GUP corrected Casimir effect in f(R,Lm) gravity
Traversable wormholes require exotic matter for stability, challenging their existence. Quantum mechanics offers a potential solution via the Casimir effect, which generates negative energy densities. In this study, we examine this interaction using two maximally localized quantum state models: the Kempf, Mangano, and Mann (KMM) model and the Detournay, Gabriel, and Spindel (DGS) model, incorporating Generalized Uncertainty Principle (GUP) corrections. We start by deriving the field equations for a generic function, assuming a static and spherically symmetric Morris-Thorne wormhole metric. We then consider two specific gravity models: a linear model and a nonlinear model , where and are free parameters. Using the GUP-corrected Casimir effect, we derive the shape functions for these wormholes and investigate their existence. Next, we analyze the obtained wormhole solutions for each scenario, assessing the energy conditions at the wormhole throat with radius . Our findings indicate that, for some arbitrary quantities, classical energy conditions are violated at the wormhole throat, highlighting the significant influence of GUP parameters on the geometry and physical properties of wormholes. Additionally, we explore the behavior of the equation of state (EoS) for each model. We further investigate the stability of the KMM and DGS wormhole solutions by applying the Tolman–Oppenheimer–Volkoff (TOV) equation. Finally, we use the volume integral quantifier to determine the amount of exotic matter required near the wormhole throat for both models, providing a comprehensive understanding of the exotic matter distribution necessary for maintaining wormhole stability.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.