糖基化白藜芦醇衍生物作为抗脑缺血再灌注损伤的抗氧化神经保护剂的合成与生物活性评估

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic Chemistry Pub Date : 2024-09-02 DOI:10.1016/j.bioorg.2024.107791
{"title":"糖基化白藜芦醇衍生物作为抗脑缺血再灌注损伤的抗氧化神经保护剂的合成与生物活性评估","authors":"","doi":"10.1016/j.bioorg.2024.107791","DOIUrl":null,"url":null,"abstract":"<div><p>Resveratrol (Res) has long been discovered to have antioxidant effects to prevent such as oxidation, inflammation, neurodegeneration and age-related diseases. However, its poor water solubility, low bioavailability and instability have become a barrier to its pharmaceutical application. In order to improve the neuroprotective effects and develop more potential usage of Res, three Res derivatives containing one or two glucose groups, i.e., Res-Glu1, Res-Glu2 and Res-Glu3, were designed and synthesized through click reaction. Res-Glu1, Res-Glu2 and Res-Glu3 were tested being better water solubility and stability compared to Res. Res derivatives reduced •OH radicals-induced DNA damage. PC12 assays indicated that glucosylated Res derivatives could alleviate H<sub>2</sub>O<sub>2</sub>-induced neurotoxicity and reduce intracellular ROS generation, demonstrating their neuroprotective effects. In addition, Res derivatives enhanced the protective effects on cerebral ischemia–reperfusion injury in rats. Res-Glu3 displayed the best neuroprotective effects among the three derivatives.</p></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and bioactivity evaluation of glycosylated resveratrol derivatives as antioxidative neuroprotection agents against cerebral Ischemia-Reperfusion injury\",\"authors\":\"\",\"doi\":\"10.1016/j.bioorg.2024.107791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Resveratrol (Res) has long been discovered to have antioxidant effects to prevent such as oxidation, inflammation, neurodegeneration and age-related diseases. However, its poor water solubility, low bioavailability and instability have become a barrier to its pharmaceutical application. In order to improve the neuroprotective effects and develop more potential usage of Res, three Res derivatives containing one or two glucose groups, i.e., Res-Glu1, Res-Glu2 and Res-Glu3, were designed and synthesized through click reaction. Res-Glu1, Res-Glu2 and Res-Glu3 were tested being better water solubility and stability compared to Res. Res derivatives reduced •OH radicals-induced DNA damage. PC12 assays indicated that glucosylated Res derivatives could alleviate H<sub>2</sub>O<sub>2</sub>-induced neurotoxicity and reduce intracellular ROS generation, demonstrating their neuroprotective effects. In addition, Res derivatives enhanced the protective effects on cerebral ischemia–reperfusion injury in rats. Res-Glu3 displayed the best neuroprotective effects among the three derivatives.</p></div>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045206824006965\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206824006965","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

白藜芦醇(Res)很早就被发现具有抗氧化作用,可预防氧化、炎症、神经退化和与年龄有关的疾病。然而,白藜芦醇的水溶性差、生物利用率低和不稳定性成为其制药应用的障碍。为了提高 Res 的神经保护作用并开发其更多潜在用途,研究人员通过点击反应设计并合成了三种含有一个或两个葡萄糖基团的 Res 衍生物,即 Res-Glu1、Res-Glu2 和 Res-Glu3。经测试,与 Res 相比,Res-Glu1、Res-Glu2 和 Res-Glu3 具有更好的水溶性和稳定性。Res 衍生物可减少-OH 自由基诱导的 DNA 损伤。PC12 试验表明,葡萄糖基化的 Res 衍生物可减轻 H2O2 诱导的神经毒性并减少细胞内 ROS 的生成,这证明了它们的神经保护作用。此外,Res 衍生物还能增强对大鼠脑缺血再灌注损伤的保护作用。在三种衍生物中,Res-Glu3 的神经保护效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and bioactivity evaluation of glycosylated resveratrol derivatives as antioxidative neuroprotection agents against cerebral Ischemia-Reperfusion injury

Resveratrol (Res) has long been discovered to have antioxidant effects to prevent such as oxidation, inflammation, neurodegeneration and age-related diseases. However, its poor water solubility, low bioavailability and instability have become a barrier to its pharmaceutical application. In order to improve the neuroprotective effects and develop more potential usage of Res, three Res derivatives containing one or two glucose groups, i.e., Res-Glu1, Res-Glu2 and Res-Glu3, were designed and synthesized through click reaction. Res-Glu1, Res-Glu2 and Res-Glu3 were tested being better water solubility and stability compared to Res. Res derivatives reduced •OH radicals-induced DNA damage. PC12 assays indicated that glucosylated Res derivatives could alleviate H2O2-induced neurotoxicity and reduce intracellular ROS generation, demonstrating their neuroprotective effects. In addition, Res derivatives enhanced the protective effects on cerebral ischemia–reperfusion injury in rats. Res-Glu3 displayed the best neuroprotective effects among the three derivatives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
期刊最新文献
Synthesis of S-alkylated oxadiazole bearing imidazo[2,1-b]thiazole derivatives targeting breast cancer: In vitro cytotoxic evaluation and in vivo radioactive tracing studies. Computational Design, Synthesis, and Bioevaluation of 2-(Pyrimidin-4-yl) oxazole-4-carboxamide Derivatives: Dual Inhibition of EGFRWT and EGFRT790M with ADMET Profiling. Unveiling cofactor inhibition mechanisms in horse liver alcohol dehydrogenase: An allosteric driven regulation. Indole-based COX-2 inhibitors: A decade of advances in inflammation, cancer, and Alzheimer's therapy. Synergy trap for guardian angels of DNA: Unraveling the anticancer potential of phthalazinone-thiosemicarbazone hybrids through dual PARP-1 and TOPO-I inhibition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1