Jorge Otero , Miguel A. Rodríguez-Lázaro , Arturo Martínez-Trejo , Daniel Mbanze , Gorka Solana , Andrea Vergara , Salvador Bosch , David Gozal , Jordi Vila , Ramon Farré
{"title":"利用环介导等温扩增技术检测传染性微生物的可靠、低成本开源装置","authors":"Jorge Otero , Miguel A. Rodríguez-Lázaro , Arturo Martínez-Trejo , Daniel Mbanze , Gorka Solana , Andrea Vergara , Salvador Bosch , David Gozal , Jordi Vila , Ramon Farré","doi":"10.1016/j.ohx.2024.e00568","DOIUrl":null,"url":null,"abstract":"<div><p>Loop-Mediated Isothermal Amplification (LAMP) is a useful technique for detecting infectious microorganisms in human fluids since it performs similarly to conventional PCR, the results are obtained faster and no thermocyclers or complex devices are required. Since only two isothermal blocks (95 °C to lyse cells and 65 °C for DNA amplification) are needed, LAMP is particularly suited for applications in Low- and Middle-Income Countries (LMICs). To validate such assumption, we first designed and tested Arduino-controlled LAMP thermoblocks to process a considerable number of samples simultaneously with a low-energy consumption to enable routine use under worst-case conditions (no main power source and low ambient temperatures).<!--> <!-->The thermoblocks were tested when battery-powered at temperature down to 5 °C, showing high stability in well temperatures (<0.8 °C). The charge required for both thermoblocks to simultaneously achieve the target temperatures after switching on and to keep their working temperatures were 4.1 A·h and 2.4 A·h/h, respectively. Second, we implemented a low-cost viewer with LEDs and filters to detect the fluorescent LAMP reaction. All the components required for the instrument are for general purpose and readily available by e-commerce. Thus, the LAMP device allows for considerable autonomy by using a typical car battery in rural and itinerant healthcare or field hospitals in LMICs, even under difficult environmental conditions.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000622/pdfft?md5=f80c4379d2ef4cff02a8017afa0a35a6&pid=1-s2.0-S2468067224000622-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Robust and low-cost open-source device for detecting infectious microorganisms by loop-mediated isothermal amplification\",\"authors\":\"Jorge Otero , Miguel A. Rodríguez-Lázaro , Arturo Martínez-Trejo , Daniel Mbanze , Gorka Solana , Andrea Vergara , Salvador Bosch , David Gozal , Jordi Vila , Ramon Farré\",\"doi\":\"10.1016/j.ohx.2024.e00568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Loop-Mediated Isothermal Amplification (LAMP) is a useful technique for detecting infectious microorganisms in human fluids since it performs similarly to conventional PCR, the results are obtained faster and no thermocyclers or complex devices are required. Since only two isothermal blocks (95 °C to lyse cells and 65 °C for DNA amplification) are needed, LAMP is particularly suited for applications in Low- and Middle-Income Countries (LMICs). To validate such assumption, we first designed and tested Arduino-controlled LAMP thermoblocks to process a considerable number of samples simultaneously with a low-energy consumption to enable routine use under worst-case conditions (no main power source and low ambient temperatures).<!--> <!-->The thermoblocks were tested when battery-powered at temperature down to 5 °C, showing high stability in well temperatures (<0.8 °C). The charge required for both thermoblocks to simultaneously achieve the target temperatures after switching on and to keep their working temperatures were 4.1 A·h and 2.4 A·h/h, respectively. Second, we implemented a low-cost viewer with LEDs and filters to detect the fluorescent LAMP reaction. All the components required for the instrument are for general purpose and readily available by e-commerce. Thus, the LAMP device allows for considerable autonomy by using a typical car battery in rural and itinerant healthcare or field hospitals in LMICs, even under difficult environmental conditions.</p></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000622/pdfft?md5=f80c4379d2ef4cff02a8017afa0a35a6&pid=1-s2.0-S2468067224000622-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Robust and low-cost open-source device for detecting infectious microorganisms by loop-mediated isothermal amplification
Loop-Mediated Isothermal Amplification (LAMP) is a useful technique for detecting infectious microorganisms in human fluids since it performs similarly to conventional PCR, the results are obtained faster and no thermocyclers or complex devices are required. Since only two isothermal blocks (95 °C to lyse cells and 65 °C for DNA amplification) are needed, LAMP is particularly suited for applications in Low- and Middle-Income Countries (LMICs). To validate such assumption, we first designed and tested Arduino-controlled LAMP thermoblocks to process a considerable number of samples simultaneously with a low-energy consumption to enable routine use under worst-case conditions (no main power source and low ambient temperatures). The thermoblocks were tested when battery-powered at temperature down to 5 °C, showing high stability in well temperatures (<0.8 °C). The charge required for both thermoblocks to simultaneously achieve the target temperatures after switching on and to keep their working temperatures were 4.1 A·h and 2.4 A·h/h, respectively. Second, we implemented a low-cost viewer with LEDs and filters to detect the fluorescent LAMP reaction. All the components required for the instrument are for general purpose and readily available by e-commerce. Thus, the LAMP device allows for considerable autonomy by using a typical car battery in rural and itinerant healthcare or field hospitals in LMICs, even under difficult environmental conditions.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.