不同遮挡条件下用于无创葡萄串检测的深度学习模型

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2024-09-06 DOI:10.1016/j.compag.2024.109421
{"title":"不同遮挡条件下用于无创葡萄串检测的深度学习模型","authors":"","doi":"10.1016/j.compag.2024.109421","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately and automatically estimating vineyard yield is a significant challenge. This study focuses on grape bunch counting in commercial vineyards using advanced deep learning techniques and object detection algorithms. The aim is to overcome the limitations of conventional yield estimation techniques, which are labour intensive, costly, and often inaccurate due to the spatial and temporal variability of the vineyard. This research proposes a non-invasive methodology for identifying grape bunches under different occlusion conditions using RGB cameras and deep learning models. The methodology is based on the collection of RGB images captured under field conditions, coupled with the implementation of the YOLOv4 architecture for data processing and analysis. Statistical indicators were used to evaluate the performance of the developed models. The comprehensive model produced a favourable outcome during validation, with an error rate of 1.12 bunches (R<sup>2</sup> = 0.83). In the test dataset, the model achieved an error rate of 1.12 (R<sup>2</sup> = 0.81). The results highlight the potential of emerging technologies to significantly improve vineyard yield estimation. This approach has the potential to assist vineyard management practices, enabling more informed and efficient decisions that could increase both the quantity and quality of grape production intended for winemaking.</p></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168169924008123/pdfft?md5=d4792773031bd514df5fc9410b731507&pid=1-s2.0-S0168169924008123-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning modelling for non-invasive grape bunch detection under diverse occlusion conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.compag.2024.109421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurately and automatically estimating vineyard yield is a significant challenge. This study focuses on grape bunch counting in commercial vineyards using advanced deep learning techniques and object detection algorithms. The aim is to overcome the limitations of conventional yield estimation techniques, which are labour intensive, costly, and often inaccurate due to the spatial and temporal variability of the vineyard. This research proposes a non-invasive methodology for identifying grape bunches under different occlusion conditions using RGB cameras and deep learning models. The methodology is based on the collection of RGB images captured under field conditions, coupled with the implementation of the YOLOv4 architecture for data processing and analysis. Statistical indicators were used to evaluate the performance of the developed models. The comprehensive model produced a favourable outcome during validation, with an error rate of 1.12 bunches (R<sup>2</sup> = 0.83). In the test dataset, the model achieved an error rate of 1.12 (R<sup>2</sup> = 0.81). The results highlight the potential of emerging technologies to significantly improve vineyard yield estimation. This approach has the potential to assist vineyard management practices, enabling more informed and efficient decisions that could increase both the quantity and quality of grape production intended for winemaking.</p></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168169924008123/pdfft?md5=d4792773031bd514df5fc9410b731507&pid=1-s2.0-S0168169924008123-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169924008123\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924008123","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确自动地估算葡萄园产量是一项重大挑战。本研究的重点是利用先进的深度学习技术和物体检测算法对商业葡萄园中的葡萄串进行计数。其目的是克服传统产量估算技术的局限性,传统产量估算技术劳动强度大、成本高,而且由于葡萄园的空间和时间可变性,往往不准确。本研究提出了一种非侵入式方法,利用 RGB 相机和深度学习模型在不同遮挡条件下识别葡萄串。该方法基于在田间条件下采集的 RGB 图像,并采用 YOLOv4 架构进行数据处理和分析。统计指标用于评估所开发模型的性能。综合模型在验证过程中取得了良好的结果,误差率为 1.12 束(R2 = 0.83)。在测试数据集中,该模型的误差率为 1.12(R2 = 0.81)。结果凸显了新兴技术在显著提高葡萄园产量估算方面的潜力。这种方法有可能帮助葡萄园管理实践,做出更明智、更高效的决策,从而提高酿酒葡萄的产量和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning modelling for non-invasive grape bunch detection under diverse occlusion conditions

Accurately and automatically estimating vineyard yield is a significant challenge. This study focuses on grape bunch counting in commercial vineyards using advanced deep learning techniques and object detection algorithms. The aim is to overcome the limitations of conventional yield estimation techniques, which are labour intensive, costly, and often inaccurate due to the spatial and temporal variability of the vineyard. This research proposes a non-invasive methodology for identifying grape bunches under different occlusion conditions using RGB cameras and deep learning models. The methodology is based on the collection of RGB images captured under field conditions, coupled with the implementation of the YOLOv4 architecture for data processing and analysis. Statistical indicators were used to evaluate the performance of the developed models. The comprehensive model produced a favourable outcome during validation, with an error rate of 1.12 bunches (R2 = 0.83). In the test dataset, the model achieved an error rate of 1.12 (R2 = 0.81). The results highlight the potential of emerging technologies to significantly improve vineyard yield estimation. This approach has the potential to assist vineyard management practices, enabling more informed and efficient decisions that could increase both the quantity and quality of grape production intended for winemaking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Autonomous net inspection and cleaning in sea-based fish farms: A review A review of unmanned aerial vehicle based remote sensing and machine learning for cotton crop growth monitoring High-throughput phenotypic traits estimation of faba bean based on machine learning and drone-based multimodal data Image quality safety model for the safety of the intended functionality in highly automated agricultural machines A general image classification model for agricultural machinery trajectory mode recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1