奶牛数字孪生行为感知建模新方法:基于多模态数据的奶牛日常行为识别

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2024-09-05 DOI:10.1016/j.compag.2024.109426
{"title":"奶牛数字孪生行为感知建模新方法:基于多模态数据的奶牛日常行为识别","authors":"","doi":"10.1016/j.compag.2024.109426","DOIUrl":null,"url":null,"abstract":"<div><p>The cow digital shadow reflects the behavior, health condition, and productivity of cows, playing a crucial role in ensuring animal welfare, increasing individual productivity, and improving breeding efficiency. To fully utilize the existing multimodal data on farms and build a cow digital shadow with rich behavioral information, this study proposes a multimodal data fusion algorithm for recognizing cow behaviors such as drinking, feeding, lying, standing, and walking. This algorithm leverages the strengths of different data modalities, complementing each other, and enhances the performance of the cow behavior classification model. The algorithm integrates motion sensor and video data, collected by custom-made collars with inertial measurement units (IMUs) sensors placed at the top of the cow’s neck and cameras in the barn, using EfficientNet V2 S, BiLSTM, and Transformer networks. Experimental results demonstrate recognition accuracies of 98.80 %, precision of 97.15 %, and recall rates of 96.93 %, showing significant improvements over single-modal data behavior recognition algorithms. This method maximizes the utility of existing multimodal data to generate a cow digital shadow with detailed behavioral information, enhancing the modeling and simulation element of the cow digital twin architecture and laying the foundation for developing a comprehensive cow behavior data model.</p></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New method for modeling digital twin behavior perception of cows: Cow daily behavior recognition based on multimodal data\",\"authors\":\"\",\"doi\":\"10.1016/j.compag.2024.109426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The cow digital shadow reflects the behavior, health condition, and productivity of cows, playing a crucial role in ensuring animal welfare, increasing individual productivity, and improving breeding efficiency. To fully utilize the existing multimodal data on farms and build a cow digital shadow with rich behavioral information, this study proposes a multimodal data fusion algorithm for recognizing cow behaviors such as drinking, feeding, lying, standing, and walking. This algorithm leverages the strengths of different data modalities, complementing each other, and enhances the performance of the cow behavior classification model. The algorithm integrates motion sensor and video data, collected by custom-made collars with inertial measurement units (IMUs) sensors placed at the top of the cow’s neck and cameras in the barn, using EfficientNet V2 S, BiLSTM, and Transformer networks. Experimental results demonstrate recognition accuracies of 98.80 %, precision of 97.15 %, and recall rates of 96.93 %, showing significant improvements over single-modal data behavior recognition algorithms. This method maximizes the utility of existing multimodal data to generate a cow digital shadow with detailed behavioral information, enhancing the modeling and simulation element of the cow digital twin architecture and laying the foundation for developing a comprehensive cow behavior data model.</p></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169924008172\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924008172","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

奶牛数字影像反映了奶牛的行为、健康状况和生产性能,在确保动物福利、提高个体生产性能和提高繁殖效率方面发挥着至关重要的作用。为了充分利用牧场现有的多模态数据,构建具有丰富行为信息的奶牛数字影子,本研究提出了一种多模态数据融合算法,用于识别奶牛的饮水、采食、躺卧、站立和行走等行为。该算法充分利用了不同数据模式的优势,取长补短,提高了奶牛行为分类模型的性能。该算法利用 EfficientNet V2 S、BiLSTM 和 Transformer 网络,整合了运动传感器和视频数据,这些数据是通过定制的项圈收集的,项圈上的惯性测量单元(IMU)传感器被放置在奶牛颈部上方,而摄像机则安装在牛舍中。实验结果表明,识别准确率为 98.80%,精确率为 97.15%,召回率为 96.93%,与单一模式数据行为识别算法相比有显著提高。该方法最大限度地利用了现有的多模态数据,生成了具有详细行为信息的奶牛数字影子,增强了奶牛数字孪生结构的建模和仿真要素,为开发全面的奶牛行为数据模型奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New method for modeling digital twin behavior perception of cows: Cow daily behavior recognition based on multimodal data

The cow digital shadow reflects the behavior, health condition, and productivity of cows, playing a crucial role in ensuring animal welfare, increasing individual productivity, and improving breeding efficiency. To fully utilize the existing multimodal data on farms and build a cow digital shadow with rich behavioral information, this study proposes a multimodal data fusion algorithm for recognizing cow behaviors such as drinking, feeding, lying, standing, and walking. This algorithm leverages the strengths of different data modalities, complementing each other, and enhances the performance of the cow behavior classification model. The algorithm integrates motion sensor and video data, collected by custom-made collars with inertial measurement units (IMUs) sensors placed at the top of the cow’s neck and cameras in the barn, using EfficientNet V2 S, BiLSTM, and Transformer networks. Experimental results demonstrate recognition accuracies of 98.80 %, precision of 97.15 %, and recall rates of 96.93 %, showing significant improvements over single-modal data behavior recognition algorithms. This method maximizes the utility of existing multimodal data to generate a cow digital shadow with detailed behavioral information, enhancing the modeling and simulation element of the cow digital twin architecture and laying the foundation for developing a comprehensive cow behavior data model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Autonomous net inspection and cleaning in sea-based fish farms: A review A review of unmanned aerial vehicle based remote sensing and machine learning for cotton crop growth monitoring High-throughput phenotypic traits estimation of faba bean based on machine learning and drone-based multimodal data Image quality safety model for the safety of the intended functionality in highly automated agricultural machines A general image classification model for agricultural machinery trajectory mode recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1