多分段磁场、波浪分段冷却和分布式加热对倾斜多孔腔体内混合纳米流体对流的协同效应

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2024-08-30 DOI:10.1016/j.ijft.2024.100826
Sobhan Pandit , Milan K. Mondal , Nirmal K. Manna , Dipankar Sanyal , Nirmalendu Biswas , Dipak Kumar Mandal
{"title":"多分段磁场、波浪分段冷却和分布式加热对倾斜多孔腔体内混合纳米流体对流的协同效应","authors":"Sobhan Pandit ,&nbsp;Milan K. Mondal ,&nbsp;Nirmal K. Manna ,&nbsp;Dipankar Sanyal ,&nbsp;Nirmalendu Biswas ,&nbsp;Dipak Kumar Mandal","doi":"10.1016/j.ijft.2024.100826","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the complex thermal-fluid behavior within a tilted porous enclosure filled with a Cu−Al<sub>2</sub>O<sub>3</sub>-water hybrid nanofluid, subject to segmented magnetic fields, wavy cooling segments, and distributed heat sources. The research explores the intricate interplay between geometric factors and thermal-magnetic forces to enhance heat transfer in industrial applications. The finite volume method (FVM), coupled with the SIMPLE algorithm and a TDMA solver, is employed to solve the governing transport equations. A comprehensive parametric analysis examines the effects of key dimensionless parameters: Darcy-Rayleigh number (10–10<sup>4</sup>), Darcy number (10<sup>-4</sup>–10<sup>-1</sup>), Hartmann number (0–70), magnetic field angle (0°-180°), nanoparticle volume fraction (0–2 %), porosity (0.1–1.0), wavy cooler undulation height (0–0.3), magnetic segment width (0–1), number of segmental magnetic fields (0–4), and enclosure tilting angle (0°–180°). The study elucidates the physical mechanisms underlying the transition from uniform to segmented heating scenarios. Results reveal a remarkable enhancement of up to 38 % in heat transfer performance when transitioning from a conventional square enclosure to the proposed configuration with partial waviness on opposing walls. This improvement stems from increased surface area and disrupted thermal boundary layers, promoting better fluid mixing. The application of a segmented magnetic field with strategic orientation resulted in up to 26 % enhancement by modulating flow patterns and creating localized convection cells. The segmented heating generates thermal plumes that interact with the magnetic field-induced Lorentz forces, further improving thermal transport. The findings provide valuable insights into the design and optimization of efficient heat transfer systems in various industries, including electronics cooling, solar thermal collectors, and nuclear reactors, demonstrating significant potential for energy savings and improved thermal management through the strategic integration of hybrid nanofluids, magnetic fields, and geometric modifications in porous media applications.</p></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100826"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666202724002672/pdfft?md5=8572fe49187fcb551d303f64bb7cb3ab&pid=1-s2.0-S2666202724002672-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of multi-segmented magnetic fields, wavy-segmented cooling, and distributed heating on hybrid nanofluid convective flow in tilted porous enclosures\",\"authors\":\"Sobhan Pandit ,&nbsp;Milan K. Mondal ,&nbsp;Nirmal K. Manna ,&nbsp;Dipankar Sanyal ,&nbsp;Nirmalendu Biswas ,&nbsp;Dipak Kumar Mandal\",\"doi\":\"10.1016/j.ijft.2024.100826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the complex thermal-fluid behavior within a tilted porous enclosure filled with a Cu−Al<sub>2</sub>O<sub>3</sub>-water hybrid nanofluid, subject to segmented magnetic fields, wavy cooling segments, and distributed heat sources. The research explores the intricate interplay between geometric factors and thermal-magnetic forces to enhance heat transfer in industrial applications. The finite volume method (FVM), coupled with the SIMPLE algorithm and a TDMA solver, is employed to solve the governing transport equations. A comprehensive parametric analysis examines the effects of key dimensionless parameters: Darcy-Rayleigh number (10–10<sup>4</sup>), Darcy number (10<sup>-4</sup>–10<sup>-1</sup>), Hartmann number (0–70), magnetic field angle (0°-180°), nanoparticle volume fraction (0–2 %), porosity (0.1–1.0), wavy cooler undulation height (0–0.3), magnetic segment width (0–1), number of segmental magnetic fields (0–4), and enclosure tilting angle (0°–180°). The study elucidates the physical mechanisms underlying the transition from uniform to segmented heating scenarios. Results reveal a remarkable enhancement of up to 38 % in heat transfer performance when transitioning from a conventional square enclosure to the proposed configuration with partial waviness on opposing walls. This improvement stems from increased surface area and disrupted thermal boundary layers, promoting better fluid mixing. The application of a segmented magnetic field with strategic orientation resulted in up to 26 % enhancement by modulating flow patterns and creating localized convection cells. The segmented heating generates thermal plumes that interact with the magnetic field-induced Lorentz forces, further improving thermal transport. The findings provide valuable insights into the design and optimization of efficient heat transfer systems in various industries, including electronics cooling, solar thermal collectors, and nuclear reactors, demonstrating significant potential for energy savings and improved thermal management through the strategic integration of hybrid nanofluids, magnetic fields, and geometric modifications in porous media applications.</p></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"24 \",\"pages\":\"Article 100826\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666202724002672/pdfft?md5=8572fe49187fcb551d303f64bb7cb3ab&pid=1-s2.0-S2666202724002672-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202724002672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724002672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了在一个倾斜的多孔外壳内充满铜-Al2O3-水混合纳米流体的复杂热流体行为,该外壳受到分段磁场、波浪形冷却段和分布式热源的影响。该研究探讨了几何因素和热磁力之间错综复杂的相互作用,以增强工业应用中的热传递。研究采用有限体积法 (FVM),结合 SIMPLE 算法和 TDMA 求解器,求解支配传输方程。综合参数分析考察了关键无量纲参数的影响:达西-雷利数 (10-104)、达西数 (10-4-10-1)、哈特曼数 (0-70)、磁场角 (0°-180°)、纳米颗粒体积分数 (0-2%)、孔隙率 (0.1-1.0)、波浪形冷却器起伏高度 (0-0.3)、磁段宽度 (0-1)、磁段磁场数 (0-4) 和外壳倾斜角 (0°-180°)。研究阐明了从均匀加热到分段加热的物理机制。研究结果表明,从传统的方形外壳过渡到对立壁上带有部分波纹的拟议配置时,传热性能显著提高了 38%。这种改进源于表面积的增加和热边界层的破坏,从而促进了更好的流体混合。通过调节流动模式和创建局部对流单元,应用具有战略方向的分段磁场可使效果提高 26%。分段加热产生的热羽流与磁场诱导的洛伦兹力相互作用,进一步改善了热传输。这些发现为设计和优化电子冷却、太阳能集热器和核反应堆等各行各业的高效传热系统提供了宝贵的见解,证明了通过在多孔介质应用中战略性地整合混合纳米流体、磁场和几何改性,在节约能源和改善热管理方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic effects of multi-segmented magnetic fields, wavy-segmented cooling, and distributed heating on hybrid nanofluid convective flow in tilted porous enclosures

This study investigates the complex thermal-fluid behavior within a tilted porous enclosure filled with a Cu−Al2O3-water hybrid nanofluid, subject to segmented magnetic fields, wavy cooling segments, and distributed heat sources. The research explores the intricate interplay between geometric factors and thermal-magnetic forces to enhance heat transfer in industrial applications. The finite volume method (FVM), coupled with the SIMPLE algorithm and a TDMA solver, is employed to solve the governing transport equations. A comprehensive parametric analysis examines the effects of key dimensionless parameters: Darcy-Rayleigh number (10–104), Darcy number (10-4–10-1), Hartmann number (0–70), magnetic field angle (0°-180°), nanoparticle volume fraction (0–2 %), porosity (0.1–1.0), wavy cooler undulation height (0–0.3), magnetic segment width (0–1), number of segmental magnetic fields (0–4), and enclosure tilting angle (0°–180°). The study elucidates the physical mechanisms underlying the transition from uniform to segmented heating scenarios. Results reveal a remarkable enhancement of up to 38 % in heat transfer performance when transitioning from a conventional square enclosure to the proposed configuration with partial waviness on opposing walls. This improvement stems from increased surface area and disrupted thermal boundary layers, promoting better fluid mixing. The application of a segmented magnetic field with strategic orientation resulted in up to 26 % enhancement by modulating flow patterns and creating localized convection cells. The segmented heating generates thermal plumes that interact with the magnetic field-induced Lorentz forces, further improving thermal transport. The findings provide valuable insights into the design and optimization of efficient heat transfer systems in various industries, including electronics cooling, solar thermal collectors, and nuclear reactors, demonstrating significant potential for energy savings and improved thermal management through the strategic integration of hybrid nanofluids, magnetic fields, and geometric modifications in porous media applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Compressibility effects in microchannel flows between two-parallel plates at low reynolds and mach numbers: Numerical analysis Renewable energy as an auxiliary to heat pumps: Performance evaluation of hybrid solar-geothermal-systems Effect of external force on the dispersion of particles and permeability of substances via carbon nanotubes in reverse electrodialysis using molecular dynamics simulation Effect of pin fins on heat transfer during condensation in minichannel heat exchanger Numerical investigation of the flow characteristics inside a supersonic vapor ejector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1