具有 Mittag-Leffler 和幂律内核的 MHD 广义 Couette 混合纳米流体流动的精确和分数解法

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2024-08-29 DOI:10.1016/j.ijft.2024.100837
Ali Hasan Ali , Ali Raza , Belal Batiha , Ahmed M. Abed , Zaid Ameen Abduljabbar
{"title":"具有 Mittag-Leffler 和幂律内核的 MHD 广义 Couette 混合纳米流体流动的精确和分数解法","authors":"Ali Hasan Ali ,&nbsp;Ali Raza ,&nbsp;Belal Batiha ,&nbsp;Ahmed M. Abed ,&nbsp;Zaid Ameen Abduljabbar","doi":"10.1016/j.ijft.2024.100837","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the complex behavior of Jeffrey nanofluid flow in a porous oscillating microchannel under the influence of magnetohydrodynamic (MHD) effects. The research explores how magnetic field distortions lead to diverse accumulation patterns of nanofluid particles, a phenomenon attributed to homogeneous magnetization in fluid dynamics. Nanoparticles ranging from 0.25 % to 0.5 % (low and inexpensive concentrations) are remarkably consistent for best results in most machining procedures. Different concentrations of various nanomaterial's is utilized (φ<sub>1</sub> = φ<sub>2</sub> = 0.01,  0.02,  0.03,  0.04) to make the simple nanfluid and hybrid nanofluid suspensions. By employing fractal-fractional derivatives governed by power law, a mathematical model developed to describe the time-varying, compressible MHD flow of Jeffrey nanofluid. The model incorporates the effects of heat transfer, pressure, and magnetic fields on the fluid dynamics. A novel fractional approach utilizing the Laplace transform is applied to solve the fractal MHD hybrid-fluid model integrated into a porous medium. The study reveals velocity flow decrease with increasing Reynolds numbers but increase with channel inclination. Additionally, both the Darcy number and magnetic field orientation enhance heat transfer rates. In addition, the velocity profile enhanced by the hybrid nanofluid suspension as compared to simple nanofluid flow. The research validates its findings by demonstrating the convergence of fractional and numerical solution methods. Furthermore, the study compares the performance of different hybrid nanofluids, concluding that water-based (<em>H</em><sub>2</sub><em>O</em> + <em>GO</em> + <em>MoS</em><sub>2</sub>) hybrid fluids exhibit slightly superior characteristics compared to (<em>CMC</em> + <em>GO</em> + <em>MoS</em><sub>2</sub>) hybrid nanofluids.</p></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100837"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666202724002787/pdfft?md5=3052640adec67ca03791e8a5fd3ce25b&pid=1-s2.0-S2666202724002787-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exact and fractional solution of MHD generalized Couette hybrid nanofluid flow with Mittag–Leffler and power law kernel\",\"authors\":\"Ali Hasan Ali ,&nbsp;Ali Raza ,&nbsp;Belal Batiha ,&nbsp;Ahmed M. Abed ,&nbsp;Zaid Ameen Abduljabbar\",\"doi\":\"10.1016/j.ijft.2024.100837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the complex behavior of Jeffrey nanofluid flow in a porous oscillating microchannel under the influence of magnetohydrodynamic (MHD) effects. The research explores how magnetic field distortions lead to diverse accumulation patterns of nanofluid particles, a phenomenon attributed to homogeneous magnetization in fluid dynamics. Nanoparticles ranging from 0.25 % to 0.5 % (low and inexpensive concentrations) are remarkably consistent for best results in most machining procedures. Different concentrations of various nanomaterial's is utilized (φ<sub>1</sub> = φ<sub>2</sub> = 0.01,  0.02,  0.03,  0.04) to make the simple nanfluid and hybrid nanofluid suspensions. By employing fractal-fractional derivatives governed by power law, a mathematical model developed to describe the time-varying, compressible MHD flow of Jeffrey nanofluid. The model incorporates the effects of heat transfer, pressure, and magnetic fields on the fluid dynamics. A novel fractional approach utilizing the Laplace transform is applied to solve the fractal MHD hybrid-fluid model integrated into a porous medium. The study reveals velocity flow decrease with increasing Reynolds numbers but increase with channel inclination. Additionally, both the Darcy number and magnetic field orientation enhance heat transfer rates. In addition, the velocity profile enhanced by the hybrid nanofluid suspension as compared to simple nanofluid flow. The research validates its findings by demonstrating the convergence of fractional and numerical solution methods. Furthermore, the study compares the performance of different hybrid nanofluids, concluding that water-based (<em>H</em><sub>2</sub><em>O</em> + <em>GO</em> + <em>MoS</em><sub>2</sub>) hybrid fluids exhibit slightly superior characteristics compared to (<em>CMC</em> + <em>GO</em> + <em>MoS</em><sub>2</sub>) hybrid nanofluids.</p></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"24 \",\"pages\":\"Article 100837\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666202724002787/pdfft?md5=3052640adec67ca03791e8a5fd3ce25b&pid=1-s2.0-S2666202724002787-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202724002787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724002787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了多孔振荡微通道中杰弗里纳米流体在磁流体动力学(MHD)效应影响下的复杂流动行为。研究探讨了磁场畸变如何导致纳米流体粒子的不同堆积模式,这种现象归因于流体动力学中的均匀磁化。纳米粒子的浓度从 0.25 % 到 0.5 %(低浓度和低成本),在大多数加工过程中都能达到最佳效果。利用各种纳米材料的不同浓度(φ1 = φ2 = 0.01、0.02、0.03、0.04)来制造简单纳米流体和混合纳米流体悬浮液。通过采用受幂律支配的分形-分形导数,建立了一个数学模型来描述 Jeffrey 纳米流体的时变可压缩 MHD 流动。该模型结合了传热、压力和磁场对流体动力学的影响。利用拉普拉斯变换的新型分形方法来求解集成到多孔介质中的分形 MHD 混合流体模型。研究表明,流速随雷诺数的增加而降低,但随通道倾斜度的增加而升高。此外,达西数和磁场方向都会提高传热率。此外,与简单的纳米流体流动相比,混合纳米流体悬浮液增强了速度曲线。研究通过证明分数和数值求解方法的收敛性来验证其结论。此外,研究还比较了不同混合纳米流体的性能,得出结论:与(CMC + GO + MoS2)混合纳米流体相比,水基(H2O + GO + MoS2)混合流体的特性略胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exact and fractional solution of MHD generalized Couette hybrid nanofluid flow with Mittag–Leffler and power law kernel

This study investigates the complex behavior of Jeffrey nanofluid flow in a porous oscillating microchannel under the influence of magnetohydrodynamic (MHD) effects. The research explores how magnetic field distortions lead to diverse accumulation patterns of nanofluid particles, a phenomenon attributed to homogeneous magnetization in fluid dynamics. Nanoparticles ranging from 0.25 % to 0.5 % (low and inexpensive concentrations) are remarkably consistent for best results in most machining procedures. Different concentrations of various nanomaterial's is utilized (φ1 = φ2 = 0.01,  0.02,  0.03,  0.04) to make the simple nanfluid and hybrid nanofluid suspensions. By employing fractal-fractional derivatives governed by power law, a mathematical model developed to describe the time-varying, compressible MHD flow of Jeffrey nanofluid. The model incorporates the effects of heat transfer, pressure, and magnetic fields on the fluid dynamics. A novel fractional approach utilizing the Laplace transform is applied to solve the fractal MHD hybrid-fluid model integrated into a porous medium. The study reveals velocity flow decrease with increasing Reynolds numbers but increase with channel inclination. Additionally, both the Darcy number and magnetic field orientation enhance heat transfer rates. In addition, the velocity profile enhanced by the hybrid nanofluid suspension as compared to simple nanofluid flow. The research validates its findings by demonstrating the convergence of fractional and numerical solution methods. Furthermore, the study compares the performance of different hybrid nanofluids, concluding that water-based (H2O + GO + MoS2) hybrid fluids exhibit slightly superior characteristics compared to (CMC + GO + MoS2) hybrid nanofluids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Compressibility effects in microchannel flows between two-parallel plates at low reynolds and mach numbers: Numerical analysis Renewable energy as an auxiliary to heat pumps: Performance evaluation of hybrid solar-geothermal-systems Effect of external force on the dispersion of particles and permeability of substances via carbon nanotubes in reverse electrodialysis using molecular dynamics simulation Effect of pin fins on heat transfer during condensation in minichannel heat exchanger Numerical investigation of the flow characteristics inside a supersonic vapor ejector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1