{"title":"基于张量的新型模态分解方法,用于减阶建模和优化稀疏传感器布置","authors":"","doi":"10.1016/j.ast.2024.109530","DOIUrl":null,"url":null,"abstract":"<div><p>Data-driven modal decomposition methods have become fundamental algorithms in constructing reduced order models (ROMs), which serve as a critical tool in the digital twin modeling of large complex systems. Classical modal decomposition methods are particularly adept at handling matrix-form input data that contains columnized snapshots without retaining spatial structure and neighborhood information. Focusing on addressing this problem, this paper proposed a Tensor-Based Modal Decomposition (TBMD) method to deal with the high-order tensor-form input data. TBMD method is effective in finding the potential low-order manifolds of a given high-order dynamical system with low energy loss within fewer decomposited modes. Moreover, TBMD is extended to be used in the field of optimal sensor placement via the development of a tensor-based QR factorization method and a tensor-based compressive sensing algorithm. The tensor-based QR factorization method is able to consider the spatial structure and neighborhood information of the basis matrices data in tensor form. This is the first time that a compressive sensing model has been discussed and solved for the frontal slice-wise product of a tensor and a vector. Subsequently, comprehensive case studies are conducted based on the cylinder wake dataset, airfoil vortex dataset, sea surface temperature dataset, eigenfaces dataset and turbulent channel flow dataset. The experiment results show that TBMD can accurately capture lower-order manifolds, and the tensor-based QR factorization is effective in optimizing sensor placement with fewer sensors while maintaining high reconstruction accuracy. The proposed methods in this paper is promising to be utilized in the construction of large-scale complex system digital twins, in which TBMD can serve as a fundamental algorithm in constructing ROM.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel tensor-based modal decomposition method for reduced order modeling and optimal sparse sensor placement\",\"authors\":\"\",\"doi\":\"10.1016/j.ast.2024.109530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Data-driven modal decomposition methods have become fundamental algorithms in constructing reduced order models (ROMs), which serve as a critical tool in the digital twin modeling of large complex systems. Classical modal decomposition methods are particularly adept at handling matrix-form input data that contains columnized snapshots without retaining spatial structure and neighborhood information. Focusing on addressing this problem, this paper proposed a Tensor-Based Modal Decomposition (TBMD) method to deal with the high-order tensor-form input data. TBMD method is effective in finding the potential low-order manifolds of a given high-order dynamical system with low energy loss within fewer decomposited modes. Moreover, TBMD is extended to be used in the field of optimal sensor placement via the development of a tensor-based QR factorization method and a tensor-based compressive sensing algorithm. The tensor-based QR factorization method is able to consider the spatial structure and neighborhood information of the basis matrices data in tensor form. This is the first time that a compressive sensing model has been discussed and solved for the frontal slice-wise product of a tensor and a vector. Subsequently, comprehensive case studies are conducted based on the cylinder wake dataset, airfoil vortex dataset, sea surface temperature dataset, eigenfaces dataset and turbulent channel flow dataset. The experiment results show that TBMD can accurately capture lower-order manifolds, and the tensor-based QR factorization is effective in optimizing sensor placement with fewer sensors while maintaining high reconstruction accuracy. The proposed methods in this paper is promising to be utilized in the construction of large-scale complex system digital twins, in which TBMD can serve as a fundamental algorithm in constructing ROM.</p></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824006606\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824006606","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
摘要
数据驱动模态分解方法已成为构建还原阶模型(ROM)的基本算法,而还原阶模型是大型复杂系统数字孪生建模的重要工具。经典的模态分解方法尤其擅长处理矩阵形式的输入数据,这些数据包含列化快照,但没有保留空间结构和邻域信息。针对这一问题,本文提出了一种基于张量的模态分解(TBMD)方法来处理高阶张量形式的输入数据。TBMD 方法能在较少的分解模态内以较低的能量损失有效地找到给定高阶动力系统的潜在低阶流形。此外,通过开发基于张量的 QR 因子化方法和基于张量的压缩传感算法,TBMD 被扩展应用于传感器的优化布置领域。基于张量的 QR 因式分解方法能够考虑张量形式的基矩阵数据的空间结构和邻域信息。这是首次讨论和求解张量与矢量的正面切片乘积的压缩传感模型。随后,基于气缸尾流数据集、机翼涡流数据集、海面温度数据集、特征面数据集和湍流通道流数据集进行了综合案例研究。实验结果表明,TBMD 能准确捕捉低阶流形,而基于张量的 QR 因式分解能在保持高重建精度的同时,用较少的传感器优化传感器的布置。本文提出的方法有望用于构建大规模复杂系统数字孪生,其中 TBMD 可作为构建 ROM 的基本算法。
A novel tensor-based modal decomposition method for reduced order modeling and optimal sparse sensor placement
Data-driven modal decomposition methods have become fundamental algorithms in constructing reduced order models (ROMs), which serve as a critical tool in the digital twin modeling of large complex systems. Classical modal decomposition methods are particularly adept at handling matrix-form input data that contains columnized snapshots without retaining spatial structure and neighborhood information. Focusing on addressing this problem, this paper proposed a Tensor-Based Modal Decomposition (TBMD) method to deal with the high-order tensor-form input data. TBMD method is effective in finding the potential low-order manifolds of a given high-order dynamical system with low energy loss within fewer decomposited modes. Moreover, TBMD is extended to be used in the field of optimal sensor placement via the development of a tensor-based QR factorization method and a tensor-based compressive sensing algorithm. The tensor-based QR factorization method is able to consider the spatial structure and neighborhood information of the basis matrices data in tensor form. This is the first time that a compressive sensing model has been discussed and solved for the frontal slice-wise product of a tensor and a vector. Subsequently, comprehensive case studies are conducted based on the cylinder wake dataset, airfoil vortex dataset, sea surface temperature dataset, eigenfaces dataset and turbulent channel flow dataset. The experiment results show that TBMD can accurately capture lower-order manifolds, and the tensor-based QR factorization is effective in optimizing sensor placement with fewer sensors while maintaining high reconstruction accuracy. The proposed methods in this paper is promising to be utilized in the construction of large-scale complex system digital twins, in which TBMD can serve as a fundamental algorithm in constructing ROM.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.