基于张量的新型模态分解方法,用于减阶建模和优化稀疏传感器布置

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2024-08-30 DOI:10.1016/j.ast.2024.109530
{"title":"基于张量的新型模态分解方法,用于减阶建模和优化稀疏传感器布置","authors":"","doi":"10.1016/j.ast.2024.109530","DOIUrl":null,"url":null,"abstract":"<div><p>Data-driven modal decomposition methods have become fundamental algorithms in constructing reduced order models (ROMs), which serve as a critical tool in the digital twin modeling of large complex systems. Classical modal decomposition methods are particularly adept at handling matrix-form input data that contains columnized snapshots without retaining spatial structure and neighborhood information. Focusing on addressing this problem, this paper proposed a Tensor-Based Modal Decomposition (TBMD) method to deal with the high-order tensor-form input data. TBMD method is effective in finding the potential low-order manifolds of a given high-order dynamical system with low energy loss within fewer decomposited modes. Moreover, TBMD is extended to be used in the field of optimal sensor placement via the development of a tensor-based QR factorization method and a tensor-based compressive sensing algorithm. The tensor-based QR factorization method is able to consider the spatial structure and neighborhood information of the basis matrices data in tensor form. This is the first time that a compressive sensing model has been discussed and solved for the frontal slice-wise product of a tensor and a vector. Subsequently, comprehensive case studies are conducted based on the cylinder wake dataset, airfoil vortex dataset, sea surface temperature dataset, eigenfaces dataset and turbulent channel flow dataset. The experiment results show that TBMD can accurately capture lower-order manifolds, and the tensor-based QR factorization is effective in optimizing sensor placement with fewer sensors while maintaining high reconstruction accuracy. The proposed methods in this paper is promising to be utilized in the construction of large-scale complex system digital twins, in which TBMD can serve as a fundamental algorithm in constructing ROM.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel tensor-based modal decomposition method for reduced order modeling and optimal sparse sensor placement\",\"authors\":\"\",\"doi\":\"10.1016/j.ast.2024.109530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Data-driven modal decomposition methods have become fundamental algorithms in constructing reduced order models (ROMs), which serve as a critical tool in the digital twin modeling of large complex systems. Classical modal decomposition methods are particularly adept at handling matrix-form input data that contains columnized snapshots without retaining spatial structure and neighborhood information. Focusing on addressing this problem, this paper proposed a Tensor-Based Modal Decomposition (TBMD) method to deal with the high-order tensor-form input data. TBMD method is effective in finding the potential low-order manifolds of a given high-order dynamical system with low energy loss within fewer decomposited modes. Moreover, TBMD is extended to be used in the field of optimal sensor placement via the development of a tensor-based QR factorization method and a tensor-based compressive sensing algorithm. The tensor-based QR factorization method is able to consider the spatial structure and neighborhood information of the basis matrices data in tensor form. This is the first time that a compressive sensing model has been discussed and solved for the frontal slice-wise product of a tensor and a vector. Subsequently, comprehensive case studies are conducted based on the cylinder wake dataset, airfoil vortex dataset, sea surface temperature dataset, eigenfaces dataset and turbulent channel flow dataset. The experiment results show that TBMD can accurately capture lower-order manifolds, and the tensor-based QR factorization is effective in optimizing sensor placement with fewer sensors while maintaining high reconstruction accuracy. The proposed methods in this paper is promising to be utilized in the construction of large-scale complex system digital twins, in which TBMD can serve as a fundamental algorithm in constructing ROM.</p></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824006606\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824006606","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动模态分解方法已成为构建还原阶模型(ROM)的基本算法,而还原阶模型是大型复杂系统数字孪生建模的重要工具。经典的模态分解方法尤其擅长处理矩阵形式的输入数据,这些数据包含列化快照,但没有保留空间结构和邻域信息。针对这一问题,本文提出了一种基于张量的模态分解(TBMD)方法来处理高阶张量形式的输入数据。TBMD 方法能在较少的分解模态内以较低的能量损失有效地找到给定高阶动力系统的潜在低阶流形。此外,通过开发基于张量的 QR 因子化方法和基于张量的压缩传感算法,TBMD 被扩展应用于传感器的优化布置领域。基于张量的 QR 因式分解方法能够考虑张量形式的基矩阵数据的空间结构和邻域信息。这是首次讨论和求解张量与矢量的正面切片乘积的压缩传感模型。随后,基于气缸尾流数据集、机翼涡流数据集、海面温度数据集、特征面数据集和湍流通道流数据集进行了综合案例研究。实验结果表明,TBMD 能准确捕捉低阶流形,而基于张量的 QR 因式分解能在保持高重建精度的同时,用较少的传感器优化传感器的布置。本文提出的方法有望用于构建大规模复杂系统数字孪生,其中 TBMD 可作为构建 ROM 的基本算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel tensor-based modal decomposition method for reduced order modeling and optimal sparse sensor placement

Data-driven modal decomposition methods have become fundamental algorithms in constructing reduced order models (ROMs), which serve as a critical tool in the digital twin modeling of large complex systems. Classical modal decomposition methods are particularly adept at handling matrix-form input data that contains columnized snapshots without retaining spatial structure and neighborhood information. Focusing on addressing this problem, this paper proposed a Tensor-Based Modal Decomposition (TBMD) method to deal with the high-order tensor-form input data. TBMD method is effective in finding the potential low-order manifolds of a given high-order dynamical system with low energy loss within fewer decomposited modes. Moreover, TBMD is extended to be used in the field of optimal sensor placement via the development of a tensor-based QR factorization method and a tensor-based compressive sensing algorithm. The tensor-based QR factorization method is able to consider the spatial structure and neighborhood information of the basis matrices data in tensor form. This is the first time that a compressive sensing model has been discussed and solved for the frontal slice-wise product of a tensor and a vector. Subsequently, comprehensive case studies are conducted based on the cylinder wake dataset, airfoil vortex dataset, sea surface temperature dataset, eigenfaces dataset and turbulent channel flow dataset. The experiment results show that TBMD can accurately capture lower-order manifolds, and the tensor-based QR factorization is effective in optimizing sensor placement with fewer sensors while maintaining high reconstruction accuracy. The proposed methods in this paper is promising to be utilized in the construction of large-scale complex system digital twins, in which TBMD can serve as a fundamental algorithm in constructing ROM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
Experimental study on loss and flow mechanism of variable stator vanes in high-pressure compressor with bleed Shock wave and fully turbulent boundary layer interaction controlled by surface arc plasma actuation Iterative control framework with application to guidance and attitude control of rockets Experimental and numerical study on the mechanism of leakage flow influence on the performance of high-speed diffuser cascade Point-enhanced convolutional neural network: A novel deep learning method for transonic wall-bounded flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1