Kyung Duk Kim , Weonjun Jeong , Jintae Kim , Jin-Woo Lee , Jeong-Chul Kim , Kanghee Cho
{"title":"外表面具有高含量路易斯酸位点的 Sn-MFI 纳米沸石海绵在大块酮的拜耶-维利格氧化中表现出高活性","authors":"Kyung Duk Kim , Weonjun Jeong , Jintae Kim , Jin-Woo Lee , Jeong-Chul Kim , Kanghee Cho","doi":"10.1016/j.micromeso.2024.113320","DOIUrl":null,"url":null,"abstract":"<div><p>We developed a three-step synthesis strategy to obtain Sn-incorporated MFI-type zeolite nanosponge (Sn-MFI-ns) assembled by ultrathin (∼2.5 nm) zeolite frameworks possessing uniform-sized (∼4 nm) mesopores: 1) synthesis of MFI-type borosilicate nanosponge using a zeolite structure-directing-surfactant, 2) deboronation of the borosilicate using HNO<sub>3</sub>, and 3) gas-phase incorporation of Sn into the boron-vacant sites <em>via</em> silanol groups using (CH<sub>3</sub>)<sub>2</sub>SnCl<sub>2</sub> as a precursor. The Sn-MFI-ns shows high crystallinity, consequently high thermal stability, and highly porous structure. The Sn content can be systematically controlled by the amount of the precursor, with Si/Sn ratios ranging from 30 to 200. The Sn species is highly dispersed over entire range of the zeolite surfaces, acting as Lewis acid sites. Due to the highly mesoporous structure, the Sn-MFI-ns has a significant number of Lewis acid sites on the external surfaces and mesopore walls, which are easily accessible to bulky molecules, compared to solely microporous zeolite (Sn-bulk-MFI). Consequently, the Sn-MFI-ns exhibits much higher catalytic activity than the Sn-bulk-MFI with high product selectivity in Baeyer-Villiger oxidation of 2-adamantanone, a molecule larger than the micropore apertures of MFI-type zeolite. The activity of Sn-MFI-ns is comparable to Sn-MCM-41 exposing almost all Sn to mesopore walls, advantageous to the bulky molecules’ reaction.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"380 ","pages":"Article 113320"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sn-MFI zeolite nanosponge having high content of Lewis acid sites on external surfaces, exhibiting high activity in Baeyer-Villiger oxidation of bulky ketone\",\"authors\":\"Kyung Duk Kim , Weonjun Jeong , Jintae Kim , Jin-Woo Lee , Jeong-Chul Kim , Kanghee Cho\",\"doi\":\"10.1016/j.micromeso.2024.113320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We developed a three-step synthesis strategy to obtain Sn-incorporated MFI-type zeolite nanosponge (Sn-MFI-ns) assembled by ultrathin (∼2.5 nm) zeolite frameworks possessing uniform-sized (∼4 nm) mesopores: 1) synthesis of MFI-type borosilicate nanosponge using a zeolite structure-directing-surfactant, 2) deboronation of the borosilicate using HNO<sub>3</sub>, and 3) gas-phase incorporation of Sn into the boron-vacant sites <em>via</em> silanol groups using (CH<sub>3</sub>)<sub>2</sub>SnCl<sub>2</sub> as a precursor. The Sn-MFI-ns shows high crystallinity, consequently high thermal stability, and highly porous structure. The Sn content can be systematically controlled by the amount of the precursor, with Si/Sn ratios ranging from 30 to 200. The Sn species is highly dispersed over entire range of the zeolite surfaces, acting as Lewis acid sites. Due to the highly mesoporous structure, the Sn-MFI-ns has a significant number of Lewis acid sites on the external surfaces and mesopore walls, which are easily accessible to bulky molecules, compared to solely microporous zeolite (Sn-bulk-MFI). Consequently, the Sn-MFI-ns exhibits much higher catalytic activity than the Sn-bulk-MFI with high product selectivity in Baeyer-Villiger oxidation of 2-adamantanone, a molecule larger than the micropore apertures of MFI-type zeolite. The activity of Sn-MFI-ns is comparable to Sn-MCM-41 exposing almost all Sn to mesopore walls, advantageous to the bulky molecules’ reaction.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"380 \",\"pages\":\"Article 113320\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003421\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003421","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Sn-MFI zeolite nanosponge having high content of Lewis acid sites on external surfaces, exhibiting high activity in Baeyer-Villiger oxidation of bulky ketone
We developed a three-step synthesis strategy to obtain Sn-incorporated MFI-type zeolite nanosponge (Sn-MFI-ns) assembled by ultrathin (∼2.5 nm) zeolite frameworks possessing uniform-sized (∼4 nm) mesopores: 1) synthesis of MFI-type borosilicate nanosponge using a zeolite structure-directing-surfactant, 2) deboronation of the borosilicate using HNO3, and 3) gas-phase incorporation of Sn into the boron-vacant sites via silanol groups using (CH3)2SnCl2 as a precursor. The Sn-MFI-ns shows high crystallinity, consequently high thermal stability, and highly porous structure. The Sn content can be systematically controlled by the amount of the precursor, with Si/Sn ratios ranging from 30 to 200. The Sn species is highly dispersed over entire range of the zeolite surfaces, acting as Lewis acid sites. Due to the highly mesoporous structure, the Sn-MFI-ns has a significant number of Lewis acid sites on the external surfaces and mesopore walls, which are easily accessible to bulky molecules, compared to solely microporous zeolite (Sn-bulk-MFI). Consequently, the Sn-MFI-ns exhibits much higher catalytic activity than the Sn-bulk-MFI with high product selectivity in Baeyer-Villiger oxidation of 2-adamantanone, a molecule larger than the micropore apertures of MFI-type zeolite. The activity of Sn-MFI-ns is comparable to Sn-MCM-41 exposing almost all Sn to mesopore walls, advantageous to the bulky molecules’ reaction.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.