在硬质合金上沉积清洁耐用的厚纳米金刚石复合硬涂层,实现可持续加工:生态友好型制造、表征和 3-E 分析

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Cleaner Engineering and Technology Pub Date : 2024-09-03 DOI:10.1016/j.clet.2024.100804
Mohamed Egiza , Mohamed Ragab Diab , Ali M. Ali , Koki Murasawa , Tsuyoshi Yoshitake
{"title":"在硬质合金上沉积清洁耐用的厚纳米金刚石复合硬涂层,实现可持续加工:生态友好型制造、表征和 3-E 分析","authors":"Mohamed Egiza ,&nbsp;Mohamed Ragab Diab ,&nbsp;Ali M. Ali ,&nbsp;Koki Murasawa ,&nbsp;Tsuyoshi Yoshitake","doi":"10.1016/j.clet.2024.100804","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores a sustainable approach for fabricating high-performance nanodiamond composite (NDC) hard coatings for dry machining. Aiming to address limitations in conventional coatings, such as environmental concerns, restricted film thickness, and compromised performance. The study utilizes Coaxial Arc Plasma Deposition (CAPD), a clean and efficient technique, to deposit thick (10 μm) NDC films directly on WC−Co substrates without chemical etching. Compared to traditional Chemical Vapor Deposition (CVD), CAPD offers significant advantages: lower temperature deposition, faster growth rate, and precise control over film thickness and morphology. The resulting NDC films boast exceptional durability due to their unique nanostructure, diamond nanocrystallites embedded in an amorphous carbon matrix. The addition of Al-interlayers (100–500 nm thickness) optimizes film properties. The optimal interlayer at 100 nm thickness not only mitigates the catalytic effects of Co but also enhances film hardness (50.4–58 GPa), Young's modulus (516–613.75 GPa), and adhesion (13–18.5 N) compared to films without an interlayer. Notably, the 100 nm Al-interlayer triples the deposition rate to 3.3 μm/h, achieving the desired thickness for effective hard coatings. The high density of grain boundaries within the films allows for exceptional stress release, enabling this increased thickness. Furthermore, these grain boundaries and the graphitic phase contribute to the film's superior tribological performance – a low coefficient of friction (0.1) and minimal wear rate (1.5 × 10⁻<sup>7</sup> mm³/N⋅m) under dry machining conditions. These findings demonstrate the immense potential of CAPD-deposited NDC films as a sustainable alternative for advanced cutting tools, promoting environmental responsibility, economic viability, and energy efficiency.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"22 ","pages":"Article 100804"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000843/pdfft?md5=70a8531d7dc6478930ac749c381f1b26&pid=1-s2.0-S2666790824000843-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Clean and durable thick nanodiamond composite hard coating deposited on cemented carbide towards sustainable machining: Eco-friendly fabrication, characterization, and 3-E analysis\",\"authors\":\"Mohamed Egiza ,&nbsp;Mohamed Ragab Diab ,&nbsp;Ali M. Ali ,&nbsp;Koki Murasawa ,&nbsp;Tsuyoshi Yoshitake\",\"doi\":\"10.1016/j.clet.2024.100804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research explores a sustainable approach for fabricating high-performance nanodiamond composite (NDC) hard coatings for dry machining. Aiming to address limitations in conventional coatings, such as environmental concerns, restricted film thickness, and compromised performance. The study utilizes Coaxial Arc Plasma Deposition (CAPD), a clean and efficient technique, to deposit thick (10 μm) NDC films directly on WC−Co substrates without chemical etching. Compared to traditional Chemical Vapor Deposition (CVD), CAPD offers significant advantages: lower temperature deposition, faster growth rate, and precise control over film thickness and morphology. The resulting NDC films boast exceptional durability due to their unique nanostructure, diamond nanocrystallites embedded in an amorphous carbon matrix. The addition of Al-interlayers (100–500 nm thickness) optimizes film properties. The optimal interlayer at 100 nm thickness not only mitigates the catalytic effects of Co but also enhances film hardness (50.4–58 GPa), Young's modulus (516–613.75 GPa), and adhesion (13–18.5 N) compared to films without an interlayer. Notably, the 100 nm Al-interlayer triples the deposition rate to 3.3 μm/h, achieving the desired thickness for effective hard coatings. The high density of grain boundaries within the films allows for exceptional stress release, enabling this increased thickness. Furthermore, these grain boundaries and the graphitic phase contribute to the film's superior tribological performance – a low coefficient of friction (0.1) and minimal wear rate (1.5 × 10⁻<sup>7</sup> mm³/N⋅m) under dry machining conditions. These findings demonstrate the immense potential of CAPD-deposited NDC films as a sustainable alternative for advanced cutting tools, promoting environmental responsibility, economic viability, and energy efficiency.</p></div>\",\"PeriodicalId\":34618,\"journal\":{\"name\":\"Cleaner Engineering and Technology\",\"volume\":\"22 \",\"pages\":\"Article 100804\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666790824000843/pdfft?md5=70a8531d7dc6478930ac749c381f1b26&pid=1-s2.0-S2666790824000843-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666790824000843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824000843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探索了一种可持续的方法,用于制造用于干式加工的高性能纳米金刚石复合材料(NDC)硬涂层。旨在解决传统涂层的局限性,如环境问题、膜厚受限和性能受损。该研究利用同轴电弧等离子体沉积(CAPD)这一清洁高效的技术,直接在 WC-Co 基底上沉积厚(10 μm)的 NDC 薄膜,而无需进行化学蚀刻。与传统的化学气相沉积 (CVD) 相比,CAPD 具有显著的优势:沉积温度更低、生长速度更快、可精确控制薄膜厚度和形态。生成的 NDC 薄膜具有独特的纳米结构,即在无定形碳基体中嵌入金刚石纳米晶体,因而具有超强的耐久性。添加铝中间膜(厚度为 100-500 纳米)可优化薄膜性能。100 nm 厚度的最佳夹层不仅能减轻钴的催化作用,而且与没有夹层的薄膜相比,还能提高薄膜硬度(50.4-58 GPa)、杨氏模量(516-613.75 GPa)和附着力(13-18.5 N)。值得注意的是,100 nm 的铝中间膜将沉积速率提高了三倍,达到 3.3 μm/h,达到了有效硬涂层所需的厚度。薄膜内高密度的晶界可释放出特殊的应力,从而实现厚度的增加。此外,这些晶界和石墨相还有助于提高薄膜的摩擦学性能--在干式加工条件下,摩擦系数低(0.1),磨损率小(1.5 × 10-7 mm³/N-m)。这些发现证明了 CAPD 沉积 NDC 薄膜作为先进切削工具的可持续替代品的巨大潜力,可促进环境责任、经济可行性和能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clean and durable thick nanodiamond composite hard coating deposited on cemented carbide towards sustainable machining: Eco-friendly fabrication, characterization, and 3-E analysis

This research explores a sustainable approach for fabricating high-performance nanodiamond composite (NDC) hard coatings for dry machining. Aiming to address limitations in conventional coatings, such as environmental concerns, restricted film thickness, and compromised performance. The study utilizes Coaxial Arc Plasma Deposition (CAPD), a clean and efficient technique, to deposit thick (10 μm) NDC films directly on WC−Co substrates without chemical etching. Compared to traditional Chemical Vapor Deposition (CVD), CAPD offers significant advantages: lower temperature deposition, faster growth rate, and precise control over film thickness and morphology. The resulting NDC films boast exceptional durability due to their unique nanostructure, diamond nanocrystallites embedded in an amorphous carbon matrix. The addition of Al-interlayers (100–500 nm thickness) optimizes film properties. The optimal interlayer at 100 nm thickness not only mitigates the catalytic effects of Co but also enhances film hardness (50.4–58 GPa), Young's modulus (516–613.75 GPa), and adhesion (13–18.5 N) compared to films without an interlayer. Notably, the 100 nm Al-interlayer triples the deposition rate to 3.3 μm/h, achieving the desired thickness for effective hard coatings. The high density of grain boundaries within the films allows for exceptional stress release, enabling this increased thickness. Furthermore, these grain boundaries and the graphitic phase contribute to the film's superior tribological performance – a low coefficient of friction (0.1) and minimal wear rate (1.5 × 10⁻7 mm³/N⋅m) under dry machining conditions. These findings demonstrate the immense potential of CAPD-deposited NDC films as a sustainable alternative for advanced cutting tools, promoting environmental responsibility, economic viability, and energy efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
期刊最新文献
Towards low-carbon travel trips through carbon footprint: A case study of marine tourism in Sichang Island, Thailand Recent advances of plant growth promoting rhizobacteria (PGPR) for eco-restoration of polluted soil Cost-effective solar-driven configurations for post-combustion carbon capture at Abadan Power Plant: MEA, DEA, and DGA absorption-based Synthesis and modification of nanofiltration membranes with dendrimer-modified graphene oxide to remove lead and cadmium ions from aqueous solutions Synthesis and characterization of potato starch as a feasible alternative to the commercial yarn sizing materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1