Jianfu Yin , Nan Wang , Binliang Hu , Yao Wang , Quan Wang
{"title":"用于视频压缩成像的具有变压器先验的降级感知深度展开网络","authors":"Jianfu Yin , Nan Wang , Binliang Hu , Yao Wang , Quan Wang","doi":"10.1016/j.sigpro.2024.109660","DOIUrl":null,"url":null,"abstract":"<div><p>In video snapshot compressive imaging (SCI) systems, video reconstruction methods are used to recover spatial–temporal-correlated video frame signals from a compressed measurement. While unfolding methods have demonstrated promising performance, they encounter two challenges: (1) They lack the ability to estimate degradation patterns and the degree of ill-posedness from video SCI, which hampers guiding and supervising the iterative learning process. (2) The prevailing reliance on 3D-CNNs in these methods limits their capacity to capture long-range dependencies. To address these concerns, this paper introduces the Degradation-Aware Deep Unfolding Network (DADUN). DADUN leverages estimated priors from compressed frames and the physical mask to guide and control each iteration. We also develop a novel Bidirectional Propagation Convolutional Recurrent Neural Network (BiP-CRNN) that simultaneously captures both intra-frame contents and inter-frame dependencies. By plugging BiP-CRNN into DADUN, we establish a novel end-to-end (E2E) and data-dependent deep unfolding method, DADUN with transformer prior (TP), for video sequence reconstruction. Experimental results on various video sequences show the effectiveness of our proposed approach, which is also robust to random masks and has wide generalization bounds.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109660"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation-aware deep unfolding network with transformer prior for video compressive imaging\",\"authors\":\"Jianfu Yin , Nan Wang , Binliang Hu , Yao Wang , Quan Wang\",\"doi\":\"10.1016/j.sigpro.2024.109660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In video snapshot compressive imaging (SCI) systems, video reconstruction methods are used to recover spatial–temporal-correlated video frame signals from a compressed measurement. While unfolding methods have demonstrated promising performance, they encounter two challenges: (1) They lack the ability to estimate degradation patterns and the degree of ill-posedness from video SCI, which hampers guiding and supervising the iterative learning process. (2) The prevailing reliance on 3D-CNNs in these methods limits their capacity to capture long-range dependencies. To address these concerns, this paper introduces the Degradation-Aware Deep Unfolding Network (DADUN). DADUN leverages estimated priors from compressed frames and the physical mask to guide and control each iteration. We also develop a novel Bidirectional Propagation Convolutional Recurrent Neural Network (BiP-CRNN) that simultaneously captures both intra-frame contents and inter-frame dependencies. By plugging BiP-CRNN into DADUN, we establish a novel end-to-end (E2E) and data-dependent deep unfolding method, DADUN with transformer prior (TP), for video sequence reconstruction. Experimental results on various video sequences show the effectiveness of our proposed approach, which is also robust to random masks and has wide generalization bounds.</p></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109660\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424002809\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424002809","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Degradation-aware deep unfolding network with transformer prior for video compressive imaging
In video snapshot compressive imaging (SCI) systems, video reconstruction methods are used to recover spatial–temporal-correlated video frame signals from a compressed measurement. While unfolding methods have demonstrated promising performance, they encounter two challenges: (1) They lack the ability to estimate degradation patterns and the degree of ill-posedness from video SCI, which hampers guiding and supervising the iterative learning process. (2) The prevailing reliance on 3D-CNNs in these methods limits their capacity to capture long-range dependencies. To address these concerns, this paper introduces the Degradation-Aware Deep Unfolding Network (DADUN). DADUN leverages estimated priors from compressed frames and the physical mask to guide and control each iteration. We also develop a novel Bidirectional Propagation Convolutional Recurrent Neural Network (BiP-CRNN) that simultaneously captures both intra-frame contents and inter-frame dependencies. By plugging BiP-CRNN into DADUN, we establish a novel end-to-end (E2E) and data-dependent deep unfolding method, DADUN with transformer prior (TP), for video sequence reconstruction. Experimental results on various video sequences show the effectiveness of our proposed approach, which is also robust to random masks and has wide generalization bounds.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.