Xiao Li , Huayong Chen , Xiaoqing Chen , Tao Wang , Yao Jiang , Hechun Ruan
{"title":"基于渗流效应的非粘性滑坡坝稳定性试验研究","authors":"Xiao Li , Huayong Chen , Xiaoqing Chen , Tao Wang , Yao Jiang , Hechun Ruan","doi":"10.1016/j.enggeo.2024.107708","DOIUrl":null,"url":null,"abstract":"<div><p>Landslide dams composed of unconsolidated, noncohesive soil are easily affected by seepage. As seepage develops, the dam's characteristics change dynamically, indirectly affecting its stability. However, previous studies on dam failure have mostly assumed that the dam characteristics remain constant before failure, often overlooking these changes and their effects on stability. In this study, 48 sets of flume experiments were conducted to quantify the impact of seepage under varying upstream inflow rates, dam heights, downstream slope angles, and particle size distributions. During the storage phase, the rise rate of the water level is closely linked to the seepage's diversion capacity. The diversion rate of inflow reached as high as 0.747 in this study, but decreased to 0.230 as inflow increased. Furthermore, changes in the internal stress distribution within the dam, driven by seepage, contributed to dam settlement and the sliding of the downstream slope. Notably, dam settlement exhibited both non-uniform spatial distribution and temporal stage development. The maximum settlement ratio between the point in the upstream breach and the point in the downstream breach reached as high as 2.79. Regarding the soil changes within the dam, after the seepage channel became connected, the primary soil loss involved silt particles ranging from 10 to 20 μm in size. This result reflects the increasing non-uniformity within the dam caused by seepage. Finally, Considering the changes in dam characteristics under the influence of seepage, in this study, a logistic regression model was established to assess dam stability. Overall, this study enhances the understanding of how seepage affects dam stability by examining various dam properties and presenting a model for stability assessment.</p></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"341 ","pages":"Article 107708"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the stability of noncohesive landslide dams based on seepage effect\",\"authors\":\"Xiao Li , Huayong Chen , Xiaoqing Chen , Tao Wang , Yao Jiang , Hechun Ruan\",\"doi\":\"10.1016/j.enggeo.2024.107708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landslide dams composed of unconsolidated, noncohesive soil are easily affected by seepage. As seepage develops, the dam's characteristics change dynamically, indirectly affecting its stability. However, previous studies on dam failure have mostly assumed that the dam characteristics remain constant before failure, often overlooking these changes and their effects on stability. In this study, 48 sets of flume experiments were conducted to quantify the impact of seepage under varying upstream inflow rates, dam heights, downstream slope angles, and particle size distributions. During the storage phase, the rise rate of the water level is closely linked to the seepage's diversion capacity. The diversion rate of inflow reached as high as 0.747 in this study, but decreased to 0.230 as inflow increased. Furthermore, changes in the internal stress distribution within the dam, driven by seepage, contributed to dam settlement and the sliding of the downstream slope. Notably, dam settlement exhibited both non-uniform spatial distribution and temporal stage development. The maximum settlement ratio between the point in the upstream breach and the point in the downstream breach reached as high as 2.79. Regarding the soil changes within the dam, after the seepage channel became connected, the primary soil loss involved silt particles ranging from 10 to 20 μm in size. This result reflects the increasing non-uniformity within the dam caused by seepage. Finally, Considering the changes in dam characteristics under the influence of seepage, in this study, a logistic regression model was established to assess dam stability. Overall, this study enhances the understanding of how seepage affects dam stability by examining various dam properties and presenting a model for stability assessment.</p></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"341 \",\"pages\":\"Article 107708\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795224003089\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003089","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Experimental study on the stability of noncohesive landslide dams based on seepage effect
Landslide dams composed of unconsolidated, noncohesive soil are easily affected by seepage. As seepage develops, the dam's characteristics change dynamically, indirectly affecting its stability. However, previous studies on dam failure have mostly assumed that the dam characteristics remain constant before failure, often overlooking these changes and their effects on stability. In this study, 48 sets of flume experiments were conducted to quantify the impact of seepage under varying upstream inflow rates, dam heights, downstream slope angles, and particle size distributions. During the storage phase, the rise rate of the water level is closely linked to the seepage's diversion capacity. The diversion rate of inflow reached as high as 0.747 in this study, but decreased to 0.230 as inflow increased. Furthermore, changes in the internal stress distribution within the dam, driven by seepage, contributed to dam settlement and the sliding of the downstream slope. Notably, dam settlement exhibited both non-uniform spatial distribution and temporal stage development. The maximum settlement ratio between the point in the upstream breach and the point in the downstream breach reached as high as 2.79. Regarding the soil changes within the dam, after the seepage channel became connected, the primary soil loss involved silt particles ranging from 10 to 20 μm in size. This result reflects the increasing non-uniformity within the dam caused by seepage. Finally, Considering the changes in dam characteristics under the influence of seepage, in this study, a logistic regression model was established to assess dam stability. Overall, this study enhances the understanding of how seepage affects dam stability by examining various dam properties and presenting a model for stability assessment.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.