考虑节理岩体尺寸效应的大型地下发电站挖掘工程等效连续数值模拟

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2024-09-07 DOI:10.1016/j.tust.2024.106058
{"title":"考虑节理岩体尺寸效应的大型地下发电站挖掘工程等效连续数值模拟","authors":"","doi":"10.1016/j.tust.2024.106058","DOIUrl":null,"url":null,"abstract":"<div><p>For the stability analysis of the surrounding rock mass of an underground powerhouse, reliable mechanical parameters of the rock mass and appropriate analysis methods are highly important. This paper discusses the rationality of using the mechanical parameters of the representative volume element (RVE) of a jointed rock mass as equivalent mechanical parameters and using the equivalent continuity method to simulate the excavation of a large underground powerhouse in a jointed rock mass, with the underground powerhouse of the Wuyue pumped storage power station as an example. Initially, the discrete fracture network (DFN) and synthetic rock mass (SRM) of the jointed rock mass were established. The size of the RVE of the rock mass was determined to be 23 m × 23 m × 23 m through numerical tests. The mechanical parameters of the RVE were used as the equivalent mechanical parameters of the rock mass. Then, the two-dimensional numerical calculation of the excavation of the main powerhouse was carried out using the equivalent continuous method and the discontinuous method. The mean relative error between the deformation of the surrounding rock calculated by the two methods is 8.24 %, which shows that the equivalent continuous method can calculate the overall deformation after excavation of a large underground powerhouse in a jointed rock mass. Furthermore, the three-dimensional equivalent continuous numerical calculation of underground powerhouse excavation is carried out by using the equivalent mechanical parameters determined by the RVE and Hoek–Brown criterion. Compared with the actual measurement results of the multipoint displacement meter, the mean relative error of the calculation result based on the RVE is 12.37 %, and the mean relative error of the calculation result using the Hoek–Brown criterion is 20.37 %, indicating that the numerical calculation using the mechanical parameters of the RVE of the jointed rock mass as equivalent mechanical parameters can consider the size effect of the jointed rock mass and reduce the error of the numerical calculation. Our results are expected to provide guidance for evaluating the stability of an underground powerhouse.</p></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalent continuous numerical simulation of a large-scale underground powerhouse excavation considering the size effect of the jointed rock mass\",\"authors\":\"\",\"doi\":\"10.1016/j.tust.2024.106058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the stability analysis of the surrounding rock mass of an underground powerhouse, reliable mechanical parameters of the rock mass and appropriate analysis methods are highly important. This paper discusses the rationality of using the mechanical parameters of the representative volume element (RVE) of a jointed rock mass as equivalent mechanical parameters and using the equivalent continuity method to simulate the excavation of a large underground powerhouse in a jointed rock mass, with the underground powerhouse of the Wuyue pumped storage power station as an example. Initially, the discrete fracture network (DFN) and synthetic rock mass (SRM) of the jointed rock mass were established. The size of the RVE of the rock mass was determined to be 23 m × 23 m × 23 m through numerical tests. The mechanical parameters of the RVE were used as the equivalent mechanical parameters of the rock mass. Then, the two-dimensional numerical calculation of the excavation of the main powerhouse was carried out using the equivalent continuous method and the discontinuous method. The mean relative error between the deformation of the surrounding rock calculated by the two methods is 8.24 %, which shows that the equivalent continuous method can calculate the overall deformation after excavation of a large underground powerhouse in a jointed rock mass. Furthermore, the three-dimensional equivalent continuous numerical calculation of underground powerhouse excavation is carried out by using the equivalent mechanical parameters determined by the RVE and Hoek–Brown criterion. Compared with the actual measurement results of the multipoint displacement meter, the mean relative error of the calculation result based on the RVE is 12.37 %, and the mean relative error of the calculation result using the Hoek–Brown criterion is 20.37 %, indicating that the numerical calculation using the mechanical parameters of the RVE of the jointed rock mass as equivalent mechanical parameters can consider the size effect of the jointed rock mass and reduce the error of the numerical calculation. Our results are expected to provide guidance for evaluating the stability of an underground powerhouse.</p></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779824004760\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824004760","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对于地下电站围岩的稳定性分析,可靠的岩体力学参数和适当的分析方法非常重要。本文以吴越抽水蓄能电站地下电站为例,讨论了将节理岩体代表体积元(RVE)的力学参数作为等效力学参数,并采用等效连续性方法模拟大型地下电站在节理岩体中开挖的合理性。首先,建立了节理岩体的离散断裂网(DFN)和合成岩体(SRM)。通过数值试验,确定岩体的 RVE 尺寸为 23 m × 23 m × 23 m。RVE 的力学参数被用作岩体的等效力学参数。然后,采用等效连续法和非连续法对主电站开挖进行了二维数值计算。两种方法计算出的围岩变形平均相对误差为 8.24%,这表明等效连续法可以计算出节理岩体中大型地下发电站开挖后的整体变形。此外,利用 RVE 和 Hoek-Brown 准则确定的等效力学参数,对地下发电站开挖进行了三维等效连续数值计算。与多点位移计的实际测量结果相比,基于 RVE 的计算结果的平均相对误差为 12.37%,而使用 Hoek-Brown 准则的计算结果的平均相对误差为 20.37%,这表明使用节理岩体的 RVE 力学参数作为等效力学参数进行数值计算可以考虑节理岩体的尺寸效应,减少数值计算的误差。我们的结果有望为地下发电站的稳定性评估提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Equivalent continuous numerical simulation of a large-scale underground powerhouse excavation considering the size effect of the jointed rock mass

For the stability analysis of the surrounding rock mass of an underground powerhouse, reliable mechanical parameters of the rock mass and appropriate analysis methods are highly important. This paper discusses the rationality of using the mechanical parameters of the representative volume element (RVE) of a jointed rock mass as equivalent mechanical parameters and using the equivalent continuity method to simulate the excavation of a large underground powerhouse in a jointed rock mass, with the underground powerhouse of the Wuyue pumped storage power station as an example. Initially, the discrete fracture network (DFN) and synthetic rock mass (SRM) of the jointed rock mass were established. The size of the RVE of the rock mass was determined to be 23 m × 23 m × 23 m through numerical tests. The mechanical parameters of the RVE were used as the equivalent mechanical parameters of the rock mass. Then, the two-dimensional numerical calculation of the excavation of the main powerhouse was carried out using the equivalent continuous method and the discontinuous method. The mean relative error between the deformation of the surrounding rock calculated by the two methods is 8.24 %, which shows that the equivalent continuous method can calculate the overall deformation after excavation of a large underground powerhouse in a jointed rock mass. Furthermore, the three-dimensional equivalent continuous numerical calculation of underground powerhouse excavation is carried out by using the equivalent mechanical parameters determined by the RVE and Hoek–Brown criterion. Compared with the actual measurement results of the multipoint displacement meter, the mean relative error of the calculation result based on the RVE is 12.37 %, and the mean relative error of the calculation result using the Hoek–Brown criterion is 20.37 %, indicating that the numerical calculation using the mechanical parameters of the RVE of the jointed rock mass as equivalent mechanical parameters can consider the size effect of the jointed rock mass and reduce the error of the numerical calculation. Our results are expected to provide guidance for evaluating the stability of an underground powerhouse.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Construction risk probability assessment of shield tunneling projects in karst areas based on improved two-dimensional cloud model Stresses induced in a buried corrugated metal arch culvert due to backfilling compaction efforts Cyclic seismic pushover testing of a multi-story underground station Quantitative interrelations of conditioning and recycling indices of high-saturation clay soils for EPB shield tunnelling Laboratory investigation of rock pillar reinforcement against impact loading by using high-tensile-strength polyurea with different coating thicknesses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1