BibMon:用于过程监控、软传感和故障诊断的开源 Python 软件包

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2024-09-02 DOI:10.1016/j.dche.2024.100182
Afrânio Melo , Tiago S.M. Lemos , Rafael M. Soares , Deris Spina , Nayher Clavijo , Luiz Felipe de O. Campos , Maurício Melo Câmara , Thiago Feital , Thiago K. Anzai , Pedro H. Thompson , Fábio C. Diehl , José Carlos Pinto
{"title":"BibMon:用于过程监控、软传感和故障诊断的开源 Python 软件包","authors":"Afrânio Melo ,&nbsp;Tiago S.M. Lemos ,&nbsp;Rafael M. Soares ,&nbsp;Deris Spina ,&nbsp;Nayher Clavijo ,&nbsp;Luiz Felipe de O. Campos ,&nbsp;Maurício Melo Câmara ,&nbsp;Thiago Feital ,&nbsp;Thiago K. Anzai ,&nbsp;Pedro H. Thompson ,&nbsp;Fábio C. Diehl ,&nbsp;José Carlos Pinto","doi":"10.1016/j.dche.2024.100182","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces BibMon, a Python package that provides predictive models for data-driven fault detection and diagnosis, soft sensing, and process condition monitoring. Key features include regression and reconstruction models, preprocessing pipelines, alarms, and visualization through control charts and diagnostic maps. BibMon also includes real and simulated datasets for benchmarking, comparative performance analysis of different models, and hyperparameter tuning. The package is designed to be highly extensible, allowing for easy integration of new models and methodologies through its object-oriented implementation. Currently, BibMon is in production at Petrobras, a major player in the energy industry, monitoring numerous industrial assets and enabling real-time detection and diagnosis of equipment and process faults. The software is open source and available at: <span><span>https://github.com/petrobras/bibmon</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"13 ","pages":"Article 100182"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000449/pdfft?md5=2bad12662f6927eb2b46d33e008996a7&pid=1-s2.0-S2772508124000449-main.pdf","citationCount":"0","resultStr":"{\"title\":\"BibMon: An open source Python package for process monitoring, soft sensing, and fault diagnosis\",\"authors\":\"Afrânio Melo ,&nbsp;Tiago S.M. Lemos ,&nbsp;Rafael M. Soares ,&nbsp;Deris Spina ,&nbsp;Nayher Clavijo ,&nbsp;Luiz Felipe de O. Campos ,&nbsp;Maurício Melo Câmara ,&nbsp;Thiago Feital ,&nbsp;Thiago K. Anzai ,&nbsp;Pedro H. Thompson ,&nbsp;Fábio C. Diehl ,&nbsp;José Carlos Pinto\",\"doi\":\"10.1016/j.dche.2024.100182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces BibMon, a Python package that provides predictive models for data-driven fault detection and diagnosis, soft sensing, and process condition monitoring. Key features include regression and reconstruction models, preprocessing pipelines, alarms, and visualization through control charts and diagnostic maps. BibMon also includes real and simulated datasets for benchmarking, comparative performance analysis of different models, and hyperparameter tuning. The package is designed to be highly extensible, allowing for easy integration of new models and methodologies through its object-oriented implementation. Currently, BibMon is in production at Petrobras, a major player in the energy industry, monitoring numerous industrial assets and enabling real-time detection and diagnosis of equipment and process faults. The software is open source and available at: <span><span>https://github.com/petrobras/bibmon</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"13 \",\"pages\":\"Article 100182\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772508124000449/pdfft?md5=2bad12662f6927eb2b46d33e008996a7&pid=1-s2.0-S2772508124000449-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508124000449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 BibMon,这是一个 Python 软件包,可为数据驱动的故障检测和诊断、软传感和过程状态监控提供预测模型。其主要功能包括回归和重构模型、预处理管道、警报以及通过控制图和诊断图实现的可视化。BibMon 还包括用于基准测试、不同模型的性能比较分析和超参数调整的真实和模拟数据集。该软件包的设计具有很强的可扩展性,通过面向对象的实现,可以轻松集成新的模型和方法。目前,BibMon 正在能源行业的主要企业巴西国家石油公司(Petrobras)投入生产,监控众多工业资产,实现对设备和流程故障的实时检测和诊断。该软件开源,可在以下网址获取:https://github.com/petrobras/bibmon。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BibMon: An open source Python package for process monitoring, soft sensing, and fault diagnosis

This paper introduces BibMon, a Python package that provides predictive models for data-driven fault detection and diagnosis, soft sensing, and process condition monitoring. Key features include regression and reconstruction models, preprocessing pipelines, alarms, and visualization through control charts and diagnostic maps. BibMon also includes real and simulated datasets for benchmarking, comparative performance analysis of different models, and hyperparameter tuning. The package is designed to be highly extensible, allowing for easy integration of new models and methodologies through its object-oriented implementation. Currently, BibMon is in production at Petrobras, a major player in the energy industry, monitoring numerous industrial assets and enabling real-time detection and diagnosis of equipment and process faults. The software is open source and available at: https://github.com/petrobras/bibmon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models Multi-agent distributed control of integrated process networks using an adaptive community detection approach Industrial data-driven machine learning soft sensing for optimal operation of etching tools Process integration technique for targeting carbon credit price subsidy Robust simulation and technical evaluation of large-scale gas oil hydrocracking process via extended water-energy-product (E-WEP) analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1