微藻和蓝藻衍生的植物刺激素用于缓解盐胁迫和改良农业

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2024-08-01 DOI:10.1016/j.algal.2024.103686
{"title":"微藻和蓝藻衍生的植物刺激素用于缓解盐胁迫和改良农业","authors":"","doi":"10.1016/j.algal.2024.103686","DOIUrl":null,"url":null,"abstract":"<div><p>Soil salinization poses severe abiotic stress that adversely affects plant growth and development, ultimately threatening global food security by inducing physiological abnormalities. In response to escalating nutrient demands, with global requirements quantified at 76 % for nitrogen and 87 % for phosphorus, modern agriculture is increasingly adopting sustainable practices to enhance nutrient recycling and reduce reliance on external inputs. Emerging sources of plant phytostimulants, such as microalgal and cyanobacterial biomass, show promise in augmenting crop yields and bolstering plant resistance to various abiotic factors, including salt stress. The efficacy of these microorganisms stems from their simplistic cellular structure, superior photosynthetic efficiency, capacity for heterotrophic growth, adaptability to varying environmental conditions, potential for metabolic engineering, and the abundance of valuable biomolecules (such as soluble amino acids, micronutrients, polysaccharides, and phytohormones) within their biomass. This review provides an analysis of the current research landscape concerning microalgae- and cyanobacteria-derived phytostimulants, highlighting their promise as an innovative and sustainable alternative to synthetic fertilizers in the agricultural sector. Moreover, it identifies various adaptive responses of plants to salinity stress and assesses the potential and challenges associated with the use of microalgae and cyanobacteria-based metabolites for developing new sustainable strategies to enhance crop tolerance to salinity stress.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microalgae- and cyanobacteria-derived phytostimulants for mitigation of salt stress and improved agriculture\",\"authors\":\"\",\"doi\":\"10.1016/j.algal.2024.103686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil salinization poses severe abiotic stress that adversely affects plant growth and development, ultimately threatening global food security by inducing physiological abnormalities. In response to escalating nutrient demands, with global requirements quantified at 76 % for nitrogen and 87 % for phosphorus, modern agriculture is increasingly adopting sustainable practices to enhance nutrient recycling and reduce reliance on external inputs. Emerging sources of plant phytostimulants, such as microalgal and cyanobacterial biomass, show promise in augmenting crop yields and bolstering plant resistance to various abiotic factors, including salt stress. The efficacy of these microorganisms stems from their simplistic cellular structure, superior photosynthetic efficiency, capacity for heterotrophic growth, adaptability to varying environmental conditions, potential for metabolic engineering, and the abundance of valuable biomolecules (such as soluble amino acids, micronutrients, polysaccharides, and phytohormones) within their biomass. This review provides an analysis of the current research landscape concerning microalgae- and cyanobacteria-derived phytostimulants, highlighting their promise as an innovative and sustainable alternative to synthetic fertilizers in the agricultural sector. Moreover, it identifies various adaptive responses of plants to salinity stress and assesses the potential and challenges associated with the use of microalgae and cyanobacteria-based metabolites for developing new sustainable strategies to enhance crop tolerance to salinity stress.</p></div>\",\"PeriodicalId\":7855,\"journal\":{\"name\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algal Research-Biomass Biofuels and Bioproducts\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211926424002984\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424002984","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

土壤盐碱化造成严重的非生物胁迫,对植物的生长和发育产生不利影响,并通过诱发生理异常最终威胁全球粮食安全。全球对养分的需求量不断攀升,其中氮的需求量占 76%,磷的需求量占 87%,为应对这种情况,现代农业正越来越多地采用可持续的做法,以加强养分循环利用,减少对外部投入的依赖。新出现的植物生长素来源(如微藻和蓝藻生物质)有望提高作物产量,增强植物对各种非生物因素(包括盐胁迫)的抵抗力。这些微生物的功效源于其简单的细胞结构、卓越的光合效率、异养生长能力、对不同环境条件的适应性、代谢工程的潜力以及其生物质中丰富的有价值的生物大分子(如可溶性氨基酸、微量营养素、多糖和植物激素)。本综述分析了当前有关微藻和蓝藻衍生植物刺激素的研究现状,强调了它们作为农业领域合成肥料的创新型可持续替代品的前景。此外,综述还确定了植物对盐分胁迫的各种适应性反应,并评估了利用微藻和蓝藻代谢物开发新的可持续战略以提高作物对盐分胁迫耐受性的潜力和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microalgae- and cyanobacteria-derived phytostimulants for mitigation of salt stress and improved agriculture

Soil salinization poses severe abiotic stress that adversely affects plant growth and development, ultimately threatening global food security by inducing physiological abnormalities. In response to escalating nutrient demands, with global requirements quantified at 76 % for nitrogen and 87 % for phosphorus, modern agriculture is increasingly adopting sustainable practices to enhance nutrient recycling and reduce reliance on external inputs. Emerging sources of plant phytostimulants, such as microalgal and cyanobacterial biomass, show promise in augmenting crop yields and bolstering plant resistance to various abiotic factors, including salt stress. The efficacy of these microorganisms stems from their simplistic cellular structure, superior photosynthetic efficiency, capacity for heterotrophic growth, adaptability to varying environmental conditions, potential for metabolic engineering, and the abundance of valuable biomolecules (such as soluble amino acids, micronutrients, polysaccharides, and phytohormones) within their biomass. This review provides an analysis of the current research landscape concerning microalgae- and cyanobacteria-derived phytostimulants, highlighting their promise as an innovative and sustainable alternative to synthetic fertilizers in the agricultural sector. Moreover, it identifies various adaptive responses of plants to salinity stress and assesses the potential and challenges associated with the use of microalgae and cyanobacteria-based metabolites for developing new sustainable strategies to enhance crop tolerance to salinity stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
期刊最新文献
Enhancement of intracellular extraction from Oscillatoria okine and the potential use of the extract as a supplement to fetal bovine serum in animal cell culture Characterization of natural compounds derived from diatom C. gracilis as potential therapeutic agents: An in-silico networking and docking study Potentiating Chlorella vulgaris bioinput as a growth biostimulant in the production of basil seedlings with the addition of vitamin B3 Instant Controlled Pressure Drop (DIC) as an innovative pre-treatment for extraction of natural compounds from the brown seaweed Sargassum muticum (Yendo) Fensholt 1955 (Ochrophytina, Fucales) Exploring protein N-glycosylation in the green microalga Dunaliella salina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1