人工腐植酸对还田秸秆分解和提高固碳效果的影响

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE Applied Soil Ecology Pub Date : 2024-09-05 DOI:10.1016/j.apsoil.2024.105619
{"title":"人工腐植酸对还田秸秆分解和提高固碳效果的影响","authors":"","doi":"10.1016/j.apsoil.2024.105619","DOIUrl":null,"url":null,"abstract":"<div><p>Straw returning is one of the commonly used comprehensive utilization methods of straw, but the slow decomposition of straw could affect crop growth. Artificial humic acid (A-HA) can improve the physical and chemical properties of soil and facilitate the growth of soil microorganisms. In a 180-day incubation experiment, A-HA was used as a propulsive activator to study its effects on decomposition, soil carbon fixation and emission reduction of returning straw. The results showed that the decomposition rate of straw increased by 31 % in the presence of artificial humic acid after 180 days. Moreover, A-HA increases the diversity and abundance of soil microorganisms, especially those associated with carbon sequestration, thereby reducing the rate of CO<sub>2</sub> emissions. This study improves insights on the application of artificial humic acid in promoting straw decomposition, soil carbon sequestration and emission reduction.</p></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of artificial humic acid on decomposition of returning straw and enhancement of carbon sequestration\",\"authors\":\"\",\"doi\":\"10.1016/j.apsoil.2024.105619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Straw returning is one of the commonly used comprehensive utilization methods of straw, but the slow decomposition of straw could affect crop growth. Artificial humic acid (A-HA) can improve the physical and chemical properties of soil and facilitate the growth of soil microorganisms. In a 180-day incubation experiment, A-HA was used as a propulsive activator to study its effects on decomposition, soil carbon fixation and emission reduction of returning straw. The results showed that the decomposition rate of straw increased by 31 % in the presence of artificial humic acid after 180 days. Moreover, A-HA increases the diversity and abundance of soil microorganisms, especially those associated with carbon sequestration, thereby reducing the rate of CO<sub>2</sub> emissions. This study improves insights on the application of artificial humic acid in promoting straw decomposition, soil carbon sequestration and emission reduction.</p></div>\",\"PeriodicalId\":8099,\"journal\":{\"name\":\"Applied Soil Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soil Ecology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0929139324003500\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324003500","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

秸秆还田是目前常用的秸秆综合利用方式之一,但秸秆分解缓慢,会影响作物生长。人工腐植酸(A-HA)可以改善土壤的理化性质,促进土壤微生物的生长。在为期 180 天的培养实验中,使用 A-HA 作为推进活化剂,研究其对还田秸秆分解、土壤固碳和减排的影响。结果表明,180 天后,在人工腐植酸的作用下,秸秆的分解率提高了 31%。此外,人工腐植酸还能增加土壤微生物的多样性和丰度,尤其是与固碳相关的微生物,从而降低二氧化碳的排放率。这项研究有助于深入了解人工腐植酸在促进秸秆分解、土壤固碳和减排方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of artificial humic acid on decomposition of returning straw and enhancement of carbon sequestration

Straw returning is one of the commonly used comprehensive utilization methods of straw, but the slow decomposition of straw could affect crop growth. Artificial humic acid (A-HA) can improve the physical and chemical properties of soil and facilitate the growth of soil microorganisms. In a 180-day incubation experiment, A-HA was used as a propulsive activator to study its effects on decomposition, soil carbon fixation and emission reduction of returning straw. The results showed that the decomposition rate of straw increased by 31 % in the presence of artificial humic acid after 180 days. Moreover, A-HA increases the diversity and abundance of soil microorganisms, especially those associated with carbon sequestration, thereby reducing the rate of CO2 emissions. This study improves insights on the application of artificial humic acid in promoting straw decomposition, soil carbon sequestration and emission reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
期刊最新文献
Future frontiers of agroecosystem management: Shifts in microbial community after passage through the gut of earthworms reveals enhanced abundance of cereal endophytes Processes of assembly of endophytic prokaryotic and rhizosphere fungal communities in table grape are preponderantly deterministic Long-term fertilization reshaped the accumulation of plant- and microbially-derived carbon by regulating biotic and abiotic factors in acidic paddy soil Differential response of soil abundant and rare bacterial subcommunities in the natural restoration process of oil well sites in the Loess Plateau Agricultural management reshaped the diversity patterns and community assembly of rhizosphere bacterial communities in a desert farming system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1