利用微藻生产生物柴油的超声波辅助步骤

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Research in Biotechnology Pub Date : 2024-01-01 DOI:10.1016/j.crbiot.2024.100251
{"title":"利用微藻生产生物柴油的超声波辅助步骤","authors":"","doi":"10.1016/j.crbiot.2024.100251","DOIUrl":null,"url":null,"abstract":"<div><p>Biodiesel production from microalgae is considered one of the main candidates to replace conventional fuels. In addition, the use of ultrasound can be crucial to enhance different steps in the industrial production of this biofuel from this type of microorganisms. This review focuses on the potential of ultrasound technology to increase lipid content in microalgae and improve biomass harvesting and lipid extraction, as well as its potential use in oil transesterification. Specifically, the use of ultrasound pulses in the stationary phase of microalgae growth can act as a stimulus to improve lipid content and can oxidise cell walls, improving lipid extraction and subsequent harvesting. Furthermore, if assisted with ultrasound, the reaction time, alcohol/oil molar ratio, separation process, and energy consumption of transesterification can be reduced compared to conventional methods due to the reduction of the interfacial area. Finally, ultrasound technology can be used if some of the previous processes (i.e., in situ transesterification) are coupled to decrease the number of steps in an industrial process. Regarding scale-up, although some ultrasonic reactors working in continuous operation mode have already been proposed, there are still some drawbacks, mainly related to the knowledge of bubble behaviour in different media and their effect on reactions (enzymatic or in situ transesterifications) as well as the energy consumption if ultrasound technology is used in more than one process simultaneously. These facts need to be studied in more detail to introduce this technology in a large-scale process.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000777/pdfft?md5=914b82cdf3057fb56cb769058368bd7b&pid=1-s2.0-S2590262824000777-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-assisted steps for producing biodiesel from microalgae\",\"authors\":\"\",\"doi\":\"10.1016/j.crbiot.2024.100251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biodiesel production from microalgae is considered one of the main candidates to replace conventional fuels. In addition, the use of ultrasound can be crucial to enhance different steps in the industrial production of this biofuel from this type of microorganisms. This review focuses on the potential of ultrasound technology to increase lipid content in microalgae and improve biomass harvesting and lipid extraction, as well as its potential use in oil transesterification. Specifically, the use of ultrasound pulses in the stationary phase of microalgae growth can act as a stimulus to improve lipid content and can oxidise cell walls, improving lipid extraction and subsequent harvesting. Furthermore, if assisted with ultrasound, the reaction time, alcohol/oil molar ratio, separation process, and energy consumption of transesterification can be reduced compared to conventional methods due to the reduction of the interfacial area. Finally, ultrasound technology can be used if some of the previous processes (i.e., in situ transesterification) are coupled to decrease the number of steps in an industrial process. Regarding scale-up, although some ultrasonic reactors working in continuous operation mode have already been proposed, there are still some drawbacks, mainly related to the knowledge of bubble behaviour in different media and their effect on reactions (enzymatic or in situ transesterifications) as well as the energy consumption if ultrasound technology is used in more than one process simultaneously. These facts need to be studied in more detail to introduce this technology in a large-scale process.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000777/pdfft?md5=914b82cdf3057fb56cb769058368bd7b&pid=1-s2.0-S2590262824000777-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用微藻生产生物柴油被认为是替代传统燃料的主要方法之一。此外,在利用这类微生物工业化生产生物燃料的不同步骤中,超声波的使用至关重要。本综述重点介绍超声波技术在增加微藻脂质含量、改进生物质收割和脂质提取方面的潜力,以及在油类酯交换中的潜在用途。具体来说,在微藻生长的静止期使用超声脉冲可刺激微藻提高脂质含量,并可氧化细胞壁,改善脂质提取和随后的收获。此外,在超声波的辅助下,由于界面面积减小,酯交换反应的反应时间、醇/油摩尔比、分离过程和能耗都会比传统方法减少。最后,如果将之前的一些工艺(即原位酯交换)结合起来使用,可以减少工业工艺中的步骤数量,那么就可以使用超声波技术。关于扩大规模,虽然已经提出了一些连续运行模式的超声波反应器,但仍然存在一些缺点,主要涉及对不同介质中气泡行为的了解、气泡对反应(酶解或原位酯化)的影响以及同时在多个工艺中使用超声波技术时的能耗。要在大规模工艺中采用这种技术,还需要对这些事实进行更详细的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrasound-assisted steps for producing biodiesel from microalgae

Biodiesel production from microalgae is considered one of the main candidates to replace conventional fuels. In addition, the use of ultrasound can be crucial to enhance different steps in the industrial production of this biofuel from this type of microorganisms. This review focuses on the potential of ultrasound technology to increase lipid content in microalgae and improve biomass harvesting and lipid extraction, as well as its potential use in oil transesterification. Specifically, the use of ultrasound pulses in the stationary phase of microalgae growth can act as a stimulus to improve lipid content and can oxidise cell walls, improving lipid extraction and subsequent harvesting. Furthermore, if assisted with ultrasound, the reaction time, alcohol/oil molar ratio, separation process, and energy consumption of transesterification can be reduced compared to conventional methods due to the reduction of the interfacial area. Finally, ultrasound technology can be used if some of the previous processes (i.e., in situ transesterification) are coupled to decrease the number of steps in an industrial process. Regarding scale-up, although some ultrasonic reactors working in continuous operation mode have already been proposed, there are still some drawbacks, mainly related to the knowledge of bubble behaviour in different media and their effect on reactions (enzymatic or in situ transesterifications) as well as the energy consumption if ultrasound technology is used in more than one process simultaneously. These facts need to be studied in more detail to introduce this technology in a large-scale process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Engineering yeast lipids for production of designer biodiesel Table of Contents Dolastatins and their analogues present a compelling landscape of potential natural and synthetic anticancer drug candidates Drug Discovery, Diagnostic, and therapeutic trends on Mpox: A patent landscape Life cycle and environmental impact assessment of vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1