居民活动模式及其对住宅公寓环境参数的影响:案例研究及对设计和管理的启示

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Indoor air Pub Date : 2024-09-07 DOI:10.1155/2024/4404849
Xiaodong Wang, Yang Lv, Wenjian Luo, Xianghao Duan
{"title":"居民活动模式及其对住宅公寓环境参数的影响:案例研究及对设计和管理的启示","authors":"Xiaodong Wang,&nbsp;Yang Lv,&nbsp;Wenjian Luo,&nbsp;Xianghao Duan","doi":"10.1155/2024/4404849","DOIUrl":null,"url":null,"abstract":"<p>In the quest to optimize residential environments for health and sustainability, understanding the interaction between pedestrian dynamics and environmental parameters is crucial. This study delves into this intersection by conducting a detailed spatial-temporal analysis within an apartment building. The research reveals pivotal insights about the relationship between pedestrian flow and environmental quality. Key findings reveal distinct patterns in pedestrian traffic, with two main peaks in early morning and late evening, accounting for approximately 24% of daily movement. The study identifies a pronounced preference for upward elevator use, reflecting residents’ lifestyle and floor-level choices. Importantly, we observed variable correlations between pedestrian flow and environmental pollutants. Pollutants like PM<sub>2.5</sub> and carbon monoxide exhibited weak correlations, while noise, TVOC, formaldehyde, and ozone showed stronger associations with human movement. The research uncovered significant spatial differences in pollutant levels across the building, with higher particulate matter and ozone levels in the seventh-floor elevator room. The data suggest a need for tailored pollution management strategies, especially for noise and hazardous compounds like formaldehyde and ozone, which exceed safety limits in certain areas. Our findings offer critical insights for the design and management of residential environments, emphasizing the importance of considering both pedestrian flow and environmental factors in optimizing living spaces for health and efficiency.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4404849","citationCount":"0","resultStr":"{\"title\":\"Patterns of Resident Activity and Their Impact on Environmental Parameters in Residential Apartments: Case Study and Implications for Design and Management\",\"authors\":\"Xiaodong Wang,&nbsp;Yang Lv,&nbsp;Wenjian Luo,&nbsp;Xianghao Duan\",\"doi\":\"10.1155/2024/4404849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the quest to optimize residential environments for health and sustainability, understanding the interaction between pedestrian dynamics and environmental parameters is crucial. This study delves into this intersection by conducting a detailed spatial-temporal analysis within an apartment building. The research reveals pivotal insights about the relationship between pedestrian flow and environmental quality. Key findings reveal distinct patterns in pedestrian traffic, with two main peaks in early morning and late evening, accounting for approximately 24% of daily movement. The study identifies a pronounced preference for upward elevator use, reflecting residents’ lifestyle and floor-level choices. Importantly, we observed variable correlations between pedestrian flow and environmental pollutants. Pollutants like PM<sub>2.5</sub> and carbon monoxide exhibited weak correlations, while noise, TVOC, formaldehyde, and ozone showed stronger associations with human movement. The research uncovered significant spatial differences in pollutant levels across the building, with higher particulate matter and ozone levels in the seventh-floor elevator room. The data suggest a need for tailored pollution management strategies, especially for noise and hazardous compounds like formaldehyde and ozone, which exceed safety limits in certain areas. Our findings offer critical insights for the design and management of residential environments, emphasizing the importance of considering both pedestrian flow and environmental factors in optimizing living spaces for health and efficiency.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4404849\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/4404849\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4404849","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在优化居住环境以实现健康和可持续发展的过程中,了解行人动态与环境参数之间的相互作用至关重要。本研究通过在一栋公寓楼内进行详细的时空分析,深入探讨了这一交叉关系。研究揭示了行人流量与环境质量之间关系的关键见解。主要发现揭示了行人流量的独特模式,清晨和傍晚是两个主要高峰,约占每日流量的 24%。研究发现,居民明显倾向于乘坐上行电梯,这反映了居民的生活方式和楼层选择。重要的是,我们观察到人流量与环境污染物之间存在不同的相关性。PM2.5和一氧化碳等污染物的相关性较弱,而噪音、TVOC、甲醛和臭氧与人流的相关性较强。研究发现,整栋大楼的污染物水平存在明显的空间差异,七楼电梯间的颗粒物和臭氧水平较高。这些数据表明,有必要制定量身定制的污染管理策略,尤其是针对噪音和有害化合物(如甲醛和臭氧)的管理策略,因为这些污染物在某些区域超过了安全限值。我们的研究结果为住宅环境的设计和管理提供了重要启示,强调了在优化居住空间以提高健康和效率时,同时考虑人流和环境因素的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Patterns of Resident Activity and Their Impact on Environmental Parameters in Residential Apartments: Case Study and Implications for Design and Management

In the quest to optimize residential environments for health and sustainability, understanding the interaction between pedestrian dynamics and environmental parameters is crucial. This study delves into this intersection by conducting a detailed spatial-temporal analysis within an apartment building. The research reveals pivotal insights about the relationship between pedestrian flow and environmental quality. Key findings reveal distinct patterns in pedestrian traffic, with two main peaks in early morning and late evening, accounting for approximately 24% of daily movement. The study identifies a pronounced preference for upward elevator use, reflecting residents’ lifestyle and floor-level choices. Importantly, we observed variable correlations between pedestrian flow and environmental pollutants. Pollutants like PM2.5 and carbon monoxide exhibited weak correlations, while noise, TVOC, formaldehyde, and ozone showed stronger associations with human movement. The research uncovered significant spatial differences in pollutant levels across the building, with higher particulate matter and ozone levels in the seventh-floor elevator room. The data suggest a need for tailored pollution management strategies, especially for noise and hazardous compounds like formaldehyde and ozone, which exceed safety limits in certain areas. Our findings offer critical insights for the design and management of residential environments, emphasizing the importance of considering both pedestrian flow and environmental factors in optimizing living spaces for health and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
期刊最新文献
Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic Indoor Air Quality: Predicting and Comparing Protective Behaviors in Germany and Portugal Holographic Air-Quality Monitor (HAM) Indoor Exchange Rates and Penetration From Outdoors in an Instrumented Terraced House (Townhouse) Using Gas Tracers: Implications for Particles and Gases Indoors A Respiratory Simulator for the Study of Pathogen Transmission in Indoor Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1