Aditya Mahalanabish, Steven H Huang, Dias Tulegenov, Gennady Shvets
{"title":"利用高光谱比金属介电金属表面对活细胞进行红外光谱分析。","authors":"Aditya Mahalanabish, Steven H Huang, Dias Tulegenov, Gennady Shvets","doi":"10.1021/acs.nanolett.4c03155","DOIUrl":null,"url":null,"abstract":"<p><p>Fourier transform infrared (FTIR) spectroscopy is widely used for molecular analysis. However, for the materials situated in an aqueous environment, a precondition for live biological objects such as cells, transmission-based FTIR is prevented by strong water absorption of mid-infrared (MIR) light. Reflection-based cellular assays using internal reflection elements (IREs) such as high-index prisms or flat plasmonic metasurfaces mitigate these issues but suffer from a shallow probing volume localized near the plasma membrane. Inspired by the recent introduction of high-aspect-ratio nanostructures as a novel platform for manipulating cellular behavior, we demonstrate that the integration of plasmonic metasurfaces with tall dielectric nanostructures dramatically enhances the sensing capabilities of FTIR spectroscopy. We also demonstrate the ability of a metal-on-dielectric metasurface to transduce intracellular processes, such as protein translocation to high-curvature membrane regions during cell adhesion, into interpretable spectral signatures of the reflected light.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared Spectroscopy of Live Cells Using High-Aspect-Ratio Metal-on-Dielectric Metasurfaces.\",\"authors\":\"Aditya Mahalanabish, Steven H Huang, Dias Tulegenov, Gennady Shvets\",\"doi\":\"10.1021/acs.nanolett.4c03155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fourier transform infrared (FTIR) spectroscopy is widely used for molecular analysis. However, for the materials situated in an aqueous environment, a precondition for live biological objects such as cells, transmission-based FTIR is prevented by strong water absorption of mid-infrared (MIR) light. Reflection-based cellular assays using internal reflection elements (IREs) such as high-index prisms or flat plasmonic metasurfaces mitigate these issues but suffer from a shallow probing volume localized near the plasma membrane. Inspired by the recent introduction of high-aspect-ratio nanostructures as a novel platform for manipulating cellular behavior, we demonstrate that the integration of plasmonic metasurfaces with tall dielectric nanostructures dramatically enhances the sensing capabilities of FTIR spectroscopy. We also demonstrate the ability of a metal-on-dielectric metasurface to transduce intracellular processes, such as protein translocation to high-curvature membrane regions during cell adhesion, into interpretable spectral signatures of the reflected light.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03155\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03155","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Infrared Spectroscopy of Live Cells Using High-Aspect-Ratio Metal-on-Dielectric Metasurfaces.
Fourier transform infrared (FTIR) spectroscopy is widely used for molecular analysis. However, for the materials situated in an aqueous environment, a precondition for live biological objects such as cells, transmission-based FTIR is prevented by strong water absorption of mid-infrared (MIR) light. Reflection-based cellular assays using internal reflection elements (IREs) such as high-index prisms or flat plasmonic metasurfaces mitigate these issues but suffer from a shallow probing volume localized near the plasma membrane. Inspired by the recent introduction of high-aspect-ratio nanostructures as a novel platform for manipulating cellular behavior, we demonstrate that the integration of plasmonic metasurfaces with tall dielectric nanostructures dramatically enhances the sensing capabilities of FTIR spectroscopy. We also demonstrate the ability of a metal-on-dielectric metasurface to transduce intracellular processes, such as protein translocation to high-curvature membrane regions during cell adhesion, into interpretable spectral signatures of the reflected light.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.