{"title":"抗生素和微塑料共同暴露对莴苣幼苗根瘤层微环境的影响","authors":"Aiyun Guo, Chengrong Pan, Xu Zhou, Yanyu Bao","doi":"10.1016/j.scitotenv.2024.175983","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics and microplastics (MPs) often coexist in facility agriculture soils due to the prevalent use of animal manure and plastic films. However, their combined impacts on the rhizosphere environment of lettuce remain unclear. This study assessed the effects of individual and combined exposure to polyethylene (PE) MPs (2 g·kg<sup>-1</sup>) and oxytetracycline (OTC) (0, 5, 50, and 150 mg·kg<sup>-1</sup>) on the growth of lettuce seedlings and enzyme activities, physicochemical properties, metabolite profiles and bacterial communities of rhizosphere soil of lettuce. Exposure to 150 mg·kg<sup>-1</sup> OTC, either individually or combined, significantly increased lettuce seedling shoot biomass. All treatments decreased chlorophyll and carotenoid contents. Combined exposure notably increased the Simpson's index of rhizosphere bacterial communities and altered community composition. The number of differential genera of rhizosphere was less than that of non-rhizosphere. Combined exposure significantly changed both rhizosphere and non-rhizosphere metabolite profiles. Soil organic matter emerged as the key environmental factor influencing bacterial community variation. Mantel tests revealed strong positive associations between total potassium and rhizosphere bacterial communities under combined exposure. The correlation network identified stearic acid and palmitic acid as the core metabolites in the rhizosphere. These findings offer valuable insights into the impact of OTC combined with PE MPs on lettuce rhizosphere environment.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of co-exposure of antibiotic and microplastic on the rhizosphere microenvironment of lettuce seedlings.\",\"authors\":\"Aiyun Guo, Chengrong Pan, Xu Zhou, Yanyu Bao\",\"doi\":\"10.1016/j.scitotenv.2024.175983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotics and microplastics (MPs) often coexist in facility agriculture soils due to the prevalent use of animal manure and plastic films. However, their combined impacts on the rhizosphere environment of lettuce remain unclear. This study assessed the effects of individual and combined exposure to polyethylene (PE) MPs (2 g·kg<sup>-1</sup>) and oxytetracycline (OTC) (0, 5, 50, and 150 mg·kg<sup>-1</sup>) on the growth of lettuce seedlings and enzyme activities, physicochemical properties, metabolite profiles and bacterial communities of rhizosphere soil of lettuce. Exposure to 150 mg·kg<sup>-1</sup> OTC, either individually or combined, significantly increased lettuce seedling shoot biomass. All treatments decreased chlorophyll and carotenoid contents. Combined exposure notably increased the Simpson's index of rhizosphere bacterial communities and altered community composition. The number of differential genera of rhizosphere was less than that of non-rhizosphere. Combined exposure significantly changed both rhizosphere and non-rhizosphere metabolite profiles. Soil organic matter emerged as the key environmental factor influencing bacterial community variation. Mantel tests revealed strong positive associations between total potassium and rhizosphere bacterial communities under combined exposure. The correlation network identified stearic acid and palmitic acid as the core metabolites in the rhizosphere. These findings offer valuable insights into the impact of OTC combined with PE MPs on lettuce rhizosphere environment.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175983\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175983","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effects of co-exposure of antibiotic and microplastic on the rhizosphere microenvironment of lettuce seedlings.
Antibiotics and microplastics (MPs) often coexist in facility agriculture soils due to the prevalent use of animal manure and plastic films. However, their combined impacts on the rhizosphere environment of lettuce remain unclear. This study assessed the effects of individual and combined exposure to polyethylene (PE) MPs (2 g·kg-1) and oxytetracycline (OTC) (0, 5, 50, and 150 mg·kg-1) on the growth of lettuce seedlings and enzyme activities, physicochemical properties, metabolite profiles and bacterial communities of rhizosphere soil of lettuce. Exposure to 150 mg·kg-1 OTC, either individually or combined, significantly increased lettuce seedling shoot biomass. All treatments decreased chlorophyll and carotenoid contents. Combined exposure notably increased the Simpson's index of rhizosphere bacterial communities and altered community composition. The number of differential genera of rhizosphere was less than that of non-rhizosphere. Combined exposure significantly changed both rhizosphere and non-rhizosphere metabolite profiles. Soil organic matter emerged as the key environmental factor influencing bacterial community variation. Mantel tests revealed strong positive associations between total potassium and rhizosphere bacterial communities under combined exposure. The correlation network identified stearic acid and palmitic acid as the core metabolites in the rhizosphere. These findings offer valuable insights into the impact of OTC combined with PE MPs on lettuce rhizosphere environment.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture