Ramin Javahershenas, Jianlin Han, Mosstafa Kazemi, Peter J Jervis
{"title":"将 2-氨基苯并噻唑应用于多组分合成杂环的最新进展。","authors":"Ramin Javahershenas, Jianlin Han, Mosstafa Kazemi, Peter J Jervis","doi":"10.1002/open.202400185","DOIUrl":null,"url":null,"abstract":"<p><p>Heterocycles are a vital class of compounds in numerous fields, including drug discovery, agriculture, and materials science. Efficient methods for the synthesis of heterocycles remain critical for meeting the demands of these industries. Recent advances in multicomponent reactions (MCRs) utilizing 2-aminobenzothiazole (ABT) have shown promising results for the formation of heterocycles. The versatility of 2-aminobenzothiazole in this context has enabled the rapid and efficient construction of diverse heterocyclic structures. Various synthetic methodologies and reactions involving 2-aminobenzothiazole are discussed, highlighting its importance as a valuable building block in the synthesis of complex heterocycles. The potential applications of these heterocycles in drug discovery and material science are also explored. Overall, this review provides a comprehensive overview of the current state of research in the field and offers insights into the future directions of this promising area of study. We highlight the potential of ABT as a versatile and sustainable starting material in heterocyclic synthesis via MCRs, with significant implications for the chemical industry.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in the Application of 2-Aminobenzothiazole to the Multicomponent Synthesis of Heterocycles.\",\"authors\":\"Ramin Javahershenas, Jianlin Han, Mosstafa Kazemi, Peter J Jervis\",\"doi\":\"10.1002/open.202400185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heterocycles are a vital class of compounds in numerous fields, including drug discovery, agriculture, and materials science. Efficient methods for the synthesis of heterocycles remain critical for meeting the demands of these industries. Recent advances in multicomponent reactions (MCRs) utilizing 2-aminobenzothiazole (ABT) have shown promising results for the formation of heterocycles. The versatility of 2-aminobenzothiazole in this context has enabled the rapid and efficient construction of diverse heterocyclic structures. Various synthetic methodologies and reactions involving 2-aminobenzothiazole are discussed, highlighting its importance as a valuable building block in the synthesis of complex heterocycles. The potential applications of these heterocycles in drug discovery and material science are also explored. Overall, this review provides a comprehensive overview of the current state of research in the field and offers insights into the future directions of this promising area of study. We highlight the potential of ABT as a versatile and sustainable starting material in heterocyclic synthesis via MCRs, with significant implications for the chemical industry.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/open.202400185\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400185","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent Advances in the Application of 2-Aminobenzothiazole to the Multicomponent Synthesis of Heterocycles.
Heterocycles are a vital class of compounds in numerous fields, including drug discovery, agriculture, and materials science. Efficient methods for the synthesis of heterocycles remain critical for meeting the demands of these industries. Recent advances in multicomponent reactions (MCRs) utilizing 2-aminobenzothiazole (ABT) have shown promising results for the formation of heterocycles. The versatility of 2-aminobenzothiazole in this context has enabled the rapid and efficient construction of diverse heterocyclic structures. Various synthetic methodologies and reactions involving 2-aminobenzothiazole are discussed, highlighting its importance as a valuable building block in the synthesis of complex heterocycles. The potential applications of these heterocycles in drug discovery and material science are also explored. Overall, this review provides a comprehensive overview of the current state of research in the field and offers insights into the future directions of this promising area of study. We highlight the potential of ABT as a versatile and sustainable starting material in heterocyclic synthesis via MCRs, with significant implications for the chemical industry.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.