Weijia Jin, Jonathan Boss, Kelly M Bakulski, Stephen A Goutman, Eva L Feldman, Lars G Fritsche, Bhramar Mukherjee
{"title":"利用英国生物库中的多基因、原有病症和基于调查的风险评分改进肌萎缩性脊髓侧索硬化症(ALS)的预测模型。","authors":"Weijia Jin, Jonathan Boss, Kelly M Bakulski, Stephen A Goutman, Eva L Feldman, Lars G Fritsche, Bhramar Mukherjee","doi":"10.1007/s00415-024-12644-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Amyotrophic lateral sclerosis (ALS) causes profound impairments in neurological function, and a cure for this devastating disease remains elusive. This study aimed to identify pre-disposing genetic, phenotypic, and exposure-related factors for amyotrophic lateral sclerosis using multi-modal data and assess their joint predictive potential.</p><p><strong>Methods: </strong>Utilizing data from the UK (United Kingdom) Biobank, we analyzed an unrelated set of 292 ALS cases and 408,831 controls of European descent. Two polygenic risk scores (PRS) are constructed: \"GWAS Hits PRS\" and \"PRS-CS,\" reflecting oligogenic and polygenic ALS risk profiles, respectively. Time-restricted phenome-wide association studies (PheWAS) were performed to identify pre-existing conditions increasing ALS risk, integrated into phenotypic risk scores (PheRS). A poly-exposure score (\"PXS\") captures the influence of environmental exposures measured through survey questionnaires. We evaluate the performance of these scores for predicting ALS incidence and stratifying risk, adjusting for baseline demographic covariates.</p><p><strong>Results: </strong>Both PRSs modestly predicted ALS diagnosis but with increased predictive power when combined (covariate-adjusted receiver operating characteristic [AAUC] = 0.584 [0.525, 0.639]). PheRS incorporated diagnoses 1 year before ALS onset (PheRS1) modestly discriminated cases from controls (AAUC = 0.515 [0.472, 0.564]). The \"PXS\" did not significantly predict ALS. However, a model incorporating PRSs and PheRS1 improved the prediction of ALS (AAUC = 0.604 [0.547, 0.667]), outperforming a model combining all risk scores. This combined risk score identified the top 10% of risk score distribution with a fourfold higher ALS risk (95% CI [2.04, 7.73]) versus those in the 40%-60% range.</p><p><strong>Discussion: </strong>By leveraging UK Biobank data, our study uncovers pre-disposing ALS factors, highlighting the improved effectiveness of multi-factorial prediction models to identify individuals at highest risk for ALS.</p>","PeriodicalId":16558,"journal":{"name":"Journal of Neurology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving prediction models of amyotrophic lateral sclerosis (ALS) using polygenic, pre-existing conditions, and survey-based risk scores in the UK Biobank.\",\"authors\":\"Weijia Jin, Jonathan Boss, Kelly M Bakulski, Stephen A Goutman, Eva L Feldman, Lars G Fritsche, Bhramar Mukherjee\",\"doi\":\"10.1007/s00415-024-12644-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>Amyotrophic lateral sclerosis (ALS) causes profound impairments in neurological function, and a cure for this devastating disease remains elusive. This study aimed to identify pre-disposing genetic, phenotypic, and exposure-related factors for amyotrophic lateral sclerosis using multi-modal data and assess their joint predictive potential.</p><p><strong>Methods: </strong>Utilizing data from the UK (United Kingdom) Biobank, we analyzed an unrelated set of 292 ALS cases and 408,831 controls of European descent. Two polygenic risk scores (PRS) are constructed: \\\"GWAS Hits PRS\\\" and \\\"PRS-CS,\\\" reflecting oligogenic and polygenic ALS risk profiles, respectively. Time-restricted phenome-wide association studies (PheWAS) were performed to identify pre-existing conditions increasing ALS risk, integrated into phenotypic risk scores (PheRS). A poly-exposure score (\\\"PXS\\\") captures the influence of environmental exposures measured through survey questionnaires. We evaluate the performance of these scores for predicting ALS incidence and stratifying risk, adjusting for baseline demographic covariates.</p><p><strong>Results: </strong>Both PRSs modestly predicted ALS diagnosis but with increased predictive power when combined (covariate-adjusted receiver operating characteristic [AAUC] = 0.584 [0.525, 0.639]). PheRS incorporated diagnoses 1 year before ALS onset (PheRS1) modestly discriminated cases from controls (AAUC = 0.515 [0.472, 0.564]). The \\\"PXS\\\" did not significantly predict ALS. However, a model incorporating PRSs and PheRS1 improved the prediction of ALS (AAUC = 0.604 [0.547, 0.667]), outperforming a model combining all risk scores. This combined risk score identified the top 10% of risk score distribution with a fourfold higher ALS risk (95% CI [2.04, 7.73]) versus those in the 40%-60% range.</p><p><strong>Discussion: </strong>By leveraging UK Biobank data, our study uncovers pre-disposing ALS factors, highlighting the improved effectiveness of multi-factorial prediction models to identify individuals at highest risk for ALS.</p>\",\"PeriodicalId\":16558,\"journal\":{\"name\":\"Journal of Neurology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00415-024-12644-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00415-024-12644-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景和目的:肌萎缩性脊髓侧索硬化症(ALS)会导致严重的神经功能损伤,而治愈这种毁灭性疾病的方法仍然遥遥无期。本研究旨在利用多模态数据确定肌萎缩性脊髓侧索硬化症的先天遗传、表型和暴露相关因素,并评估它们的联合预测潜力:我们利用英国生物库(UK Biobank)的数据,分析了一组不相关的 292 例 ALS 病例和 408831 例欧洲后裔对照。构建了两个多基因风险评分(PRS):"GWAS Hits PRS "和 "PRS-CS",分别反映寡基因和多基因 ALS 风险概况。进行限时表型全关联研究(PheWAS)以确定增加 ALS 风险的原有条件,并将其整合到表型风险评分(PheRS)中。多重暴露评分("PXS")可捕捉通过调查问卷测量的环境暴露的影响。我们评估了这些评分在预测 ALS 发病率和风险分层方面的性能,并对基线人口协变量进行了调整:两个PRS都能适度预测ALS的诊断,但合并使用时预测能力会提高(经协变量调整的接收者操作特征[AAUC] = 0.584 [0.525, 0.639])。纳入 ALS 发病前 1 年诊断的 PheRS(PheRS1)可适度区分病例与对照组(AAUC = 0.515 [0.472, 0.564])。PXS "不能显著预测 ALS。然而,结合了 PRSs 和 PheRS1 的模型提高了对 ALS 的预测能力(AAUC = 0.604 [0.547, 0.667]),优于结合所有风险评分的模型。该综合风险评分确定了风险评分分布前 10%的 ALS 风险(95% CI [2.04,7.73])比 40%-60% 范围内的 ALS 风险高四倍:通过利用英国生物库数据,我们的研究发现了导致 ALS 的先天性因素,凸显了多因素预测模型在识别 ALS 高危人群方面的有效性。
Improving prediction models of amyotrophic lateral sclerosis (ALS) using polygenic, pre-existing conditions, and survey-based risk scores in the UK Biobank.
Background and objectives: Amyotrophic lateral sclerosis (ALS) causes profound impairments in neurological function, and a cure for this devastating disease remains elusive. This study aimed to identify pre-disposing genetic, phenotypic, and exposure-related factors for amyotrophic lateral sclerosis using multi-modal data and assess their joint predictive potential.
Methods: Utilizing data from the UK (United Kingdom) Biobank, we analyzed an unrelated set of 292 ALS cases and 408,831 controls of European descent. Two polygenic risk scores (PRS) are constructed: "GWAS Hits PRS" and "PRS-CS," reflecting oligogenic and polygenic ALS risk profiles, respectively. Time-restricted phenome-wide association studies (PheWAS) were performed to identify pre-existing conditions increasing ALS risk, integrated into phenotypic risk scores (PheRS). A poly-exposure score ("PXS") captures the influence of environmental exposures measured through survey questionnaires. We evaluate the performance of these scores for predicting ALS incidence and stratifying risk, adjusting for baseline demographic covariates.
Results: Both PRSs modestly predicted ALS diagnosis but with increased predictive power when combined (covariate-adjusted receiver operating characteristic [AAUC] = 0.584 [0.525, 0.639]). PheRS incorporated diagnoses 1 year before ALS onset (PheRS1) modestly discriminated cases from controls (AAUC = 0.515 [0.472, 0.564]). The "PXS" did not significantly predict ALS. However, a model incorporating PRSs and PheRS1 improved the prediction of ALS (AAUC = 0.604 [0.547, 0.667]), outperforming a model combining all risk scores. This combined risk score identified the top 10% of risk score distribution with a fourfold higher ALS risk (95% CI [2.04, 7.73]) versus those in the 40%-60% range.
Discussion: By leveraging UK Biobank data, our study uncovers pre-disposing ALS factors, highlighting the improved effectiveness of multi-factorial prediction models to identify individuals at highest risk for ALS.
期刊介绍:
The Journal of Neurology is an international peer-reviewed journal which provides a source for publishing original communications and reviews on clinical neurology covering the whole field.
In addition, Letters to the Editors serve as a forum for clinical cases and the exchange of ideas which highlight important new findings. A section on Neurological progress serves to summarise the major findings in certain fields of neurology. Commentaries on new developments in clinical neuroscience, which may be commissioned or submitted, are published as editorials.
Every neurologist interested in the current diagnosis and treatment of neurological disorders needs access to the information contained in this valuable journal.