与洪加火山爆发有关的次声波。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-10-23 Epub Date: 2024-09-09 DOI:10.1098/rsta.2023.0319
Quan Guo, Xinxin Jin, Guanwen Sun, Yuxin Zhang, Hanyin Cui, Xiujuan Feng
{"title":"与洪加火山爆发有关的次声波。","authors":"Quan Guo, Xinxin Jin, Guanwen Sun, Yuxin Zhang, Hanyin Cui, Xiujuan Feng","doi":"10.1098/rsta.2023.0319","DOIUrl":null,"url":null,"abstract":"<p><p>On 13-15 January 2022, the Hunga Tonga-Hunga Ha'apai underwater volcano erupted. This powerful eruption generated infrasonic waves with amplitudes of thousands of Pascals in the near field. The ground infrasonic stations in China, located approximately 10 000 km from the Hunga volcano, also received waves with frequencies from 0.01 to 0.05 Hz. However, the amplitude reached 17 Pa, which is higher than the predicted amplitude using the absorption model without considering the dispersion effect in the thin thermosphere. At high altitudes, dispersion exists and the sound speed depends on the ratio of the molecular mean collision ratio to sound frequency, which is proportional to the ratio (frequency/pressure). And attenuation coefficients are complex to model. We simulate dispersive sound speeds and attenuation coefficients at different frequencies according to theory and our experimental data. In the thermosphere, the dispersion effect causes noticeable changes of sound speed and then affects wave propagation paths in the far field. The abnormal attenuation coefficient has a smaller impact on thermospheric returns than that of the dispersive sound speed, but it is also not negligible. It explains the large amplitude of thermospheric signals received in our infrasound stations. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrasound associated with the eruption of the Hunga volcano.\",\"authors\":\"Quan Guo, Xinxin Jin, Guanwen Sun, Yuxin Zhang, Hanyin Cui, Xiujuan Feng\",\"doi\":\"10.1098/rsta.2023.0319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On 13-15 January 2022, the Hunga Tonga-Hunga Ha'apai underwater volcano erupted. This powerful eruption generated infrasonic waves with amplitudes of thousands of Pascals in the near field. The ground infrasonic stations in China, located approximately 10 000 km from the Hunga volcano, also received waves with frequencies from 0.01 to 0.05 Hz. However, the amplitude reached 17 Pa, which is higher than the predicted amplitude using the absorption model without considering the dispersion effect in the thin thermosphere. At high altitudes, dispersion exists and the sound speed depends on the ratio of the molecular mean collision ratio to sound frequency, which is proportional to the ratio (frequency/pressure). And attenuation coefficients are complex to model. We simulate dispersive sound speeds and attenuation coefficients at different frequencies according to theory and our experimental data. In the thermosphere, the dispersion effect causes noticeable changes of sound speed and then affects wave propagation paths in the far field. The abnormal attenuation coefficient has a smaller impact on thermospheric returns than that of the dispersive sound speed, but it is also not negligible. It explains the large amplitude of thermospheric signals received in our infrasound stations. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0319\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0319","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2022 年 1 月 13-15 日,Hunga Tonga-Hunga Ha'apai 水下火山爆发。这次强烈的喷发在近场产生了振幅达数千帕斯卡的次声波。距离洪加火山约 10 000 公里的中国地面次声波站也接收到频率为 0.01 至 0.05 赫兹的次声波。但是,振幅达到了 17 帕,高于使用吸收模型预测的振幅,而没有考虑薄热层中的弥散效应。在高海拔地区,弥散效应是存在的,声速取决于分子平均碰撞比与声频之比,而分子平均碰撞比与声频之比(频率/压力)成正比。而衰减系数是复杂的模型。我们根据理论和实验数据模拟了不同频率下的色散声速和衰减系数。在热层中,色散效应会导致声速发生明显变化,进而影响波在远场的传播路径。与色散声速相比,异常衰减系数对热层回波的影响较小,但也不容忽视。这也是我们的次声站接收到的热层信号振幅较大的原因。本文是 "庆祝英国皇家学会牛顿国际奖学金 15 周年 "主题期刊的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infrasound associated with the eruption of the Hunga volcano.

On 13-15 January 2022, the Hunga Tonga-Hunga Ha'apai underwater volcano erupted. This powerful eruption generated infrasonic waves with amplitudes of thousands of Pascals in the near field. The ground infrasonic stations in China, located approximately 10 000 km from the Hunga volcano, also received waves with frequencies from 0.01 to 0.05 Hz. However, the amplitude reached 17 Pa, which is higher than the predicted amplitude using the absorption model without considering the dispersion effect in the thin thermosphere. At high altitudes, dispersion exists and the sound speed depends on the ratio of the molecular mean collision ratio to sound frequency, which is proportional to the ratio (frequency/pressure). And attenuation coefficients are complex to model. We simulate dispersive sound speeds and attenuation coefficients at different frequencies according to theory and our experimental data. In the thermosphere, the dispersion effect causes noticeable changes of sound speed and then affects wave propagation paths in the far field. The abnormal attenuation coefficient has a smaller impact on thermospheric returns than that of the dispersive sound speed, but it is also not negligible. It explains the large amplitude of thermospheric signals received in our infrasound stations. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
Alkali metal cations enhance CO2 reduction by a Co molecular complex in a bipolar membrane electrolyzer. An alternative to petrochemicals: biomass electrovalorization. Carbon dioxide and hydrogen as building blocks for a sustainable interface of energy and chemistry. CO2 hydrogenation to methanol over Pt functionalized Hf-UiO-67 versus Zr-UiO-67. Contributions of heterogeneous catalysis enabling resource efficiency and circular economy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1