{"title":"用于人体呼吸监测的基于 NiS2 的纳米结构柔性智能传感器。","authors":"Trishala R Desai, Aashi Gupta, Chitra Gurnani","doi":"10.1098/rsta.2023.0323","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for wearable healthcare devices has led to an urgent need for cost-effective, wireless and portable breath monitoring systems. However, it is essential to explore novel nanomaterials that combine state-of-the-art flexible sensors with high performance and sensing capabilities along with scalability and industrially acceptable processing. In this study, we demonstrate a highly efficient NiS<sub>2</sub>-based flexible capacitive sensor fabricated via a solution-processible route using a novel single-source precursor [Ni{S<sub>2</sub>P(OPr)<sub>2</sub>}<sub>2</sub>]. The developed sensor could precisely detect the human respiration rate and exhibit rapid responsiveness, exceptional sensitivity and selectivity at ambient temperatures, with an ultra-fast response and recovery. The device effectively differentiates the exhaled breath patterns including slow, fast, oral and nasal breath, as well as post-exercise breath rates. Moreover, the sensor shows outstanding bending stability, repeatability, reliable and robust sensing performance and is capable of contactless sensing. The sensor was further employed with a user-friendly wireless interface to facilitate smartphone-enabled real-time breath monitoring systems. This work opens up numerous avenues for cost-effective, sustainable and versatile sensors with potential applications for Internet of Things-based flexible and wearable electronics.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230323"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructured NiS<sub>2</sub>-based flexible smart sensors for human respiration monitoring.\",\"authors\":\"Trishala R Desai, Aashi Gupta, Chitra Gurnani\",\"doi\":\"10.1098/rsta.2023.0323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing demand for wearable healthcare devices has led to an urgent need for cost-effective, wireless and portable breath monitoring systems. However, it is essential to explore novel nanomaterials that combine state-of-the-art flexible sensors with high performance and sensing capabilities along with scalability and industrially acceptable processing. In this study, we demonstrate a highly efficient NiS<sub>2</sub>-based flexible capacitive sensor fabricated via a solution-processible route using a novel single-source precursor [Ni{S<sub>2</sub>P(OPr)<sub>2</sub>}<sub>2</sub>]. The developed sensor could precisely detect the human respiration rate and exhibit rapid responsiveness, exceptional sensitivity and selectivity at ambient temperatures, with an ultra-fast response and recovery. The device effectively differentiates the exhaled breath patterns including slow, fast, oral and nasal breath, as well as post-exercise breath rates. Moreover, the sensor shows outstanding bending stability, repeatability, reliable and robust sensing performance and is capable of contactless sensing. The sensor was further employed with a user-friendly wireless interface to facilitate smartphone-enabled real-time breath monitoring systems. This work opens up numerous avenues for cost-effective, sustainable and versatile sensors with potential applications for Internet of Things-based flexible and wearable electronics.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2281\",\"pages\":\"20230323\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0323\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0323","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Nanostructured NiS2-based flexible smart sensors for human respiration monitoring.
The growing demand for wearable healthcare devices has led to an urgent need for cost-effective, wireless and portable breath monitoring systems. However, it is essential to explore novel nanomaterials that combine state-of-the-art flexible sensors with high performance and sensing capabilities along with scalability and industrially acceptable processing. In this study, we demonstrate a highly efficient NiS2-based flexible capacitive sensor fabricated via a solution-processible route using a novel single-source precursor [Ni{S2P(OPr)2}2]. The developed sensor could precisely detect the human respiration rate and exhibit rapid responsiveness, exceptional sensitivity and selectivity at ambient temperatures, with an ultra-fast response and recovery. The device effectively differentiates the exhaled breath patterns including slow, fast, oral and nasal breath, as well as post-exercise breath rates. Moreover, the sensor shows outstanding bending stability, repeatability, reliable and robust sensing performance and is capable of contactless sensing. The sensor was further employed with a user-friendly wireless interface to facilitate smartphone-enabled real-time breath monitoring systems. This work opens up numerous avenues for cost-effective, sustainable and versatile sensors with potential applications for Internet of Things-based flexible and wearable electronics.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.