打开隐藏的维度:手性在科学探索中的力量。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-10-23 Epub Date: 2024-09-09 DOI:10.1098/rsta.2023.0321
Aras Kartouzian, Robert P Cameron
{"title":"打开隐藏的维度:手性在科学探索中的力量。","authors":"Aras Kartouzian, Robert P Cameron","doi":"10.1098/rsta.2023.0321","DOIUrl":null,"url":null,"abstract":"<p><p>In the boundless landscape of scientific exploration, there exists a hidden, yet easily accessible, dimension that has often not only intrigued and puzzled researchers but also provided the key. This dimension is chirality, the property that describes the handedness of objects. The influence of chirality extends across diverse fields of study from the parity violation in electroweak interactions to the extremely large macroscopic systems such as galaxies. In this opinion piece, we will delve into the power of chirality in scientific exploration by examining some examples that, at different scales, demonstrate its role as a key to a better understanding of our world. Our goal is to incite researchers from all fields to seek, implement and utilize chirality in their research. Going this extra mile might be more rewarding than it seems at first glance, in particular with regard to the increasing demand for new functional materials in response to the contemporary scientific and technological challenges we are facing. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the hidden dimension: power of chirality in scientific exploration.\",\"authors\":\"Aras Kartouzian, Robert P Cameron\",\"doi\":\"10.1098/rsta.2023.0321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the boundless landscape of scientific exploration, there exists a hidden, yet easily accessible, dimension that has often not only intrigued and puzzled researchers but also provided the key. This dimension is chirality, the property that describes the handedness of objects. The influence of chirality extends across diverse fields of study from the parity violation in electroweak interactions to the extremely large macroscopic systems such as galaxies. In this opinion piece, we will delve into the power of chirality in scientific exploration by examining some examples that, at different scales, demonstrate its role as a key to a better understanding of our world. Our goal is to incite researchers from all fields to seek, implement and utilize chirality in their research. Going this extra mile might be more rewarding than it seems at first glance, in particular with regard to the increasing demand for new functional materials in response to the contemporary scientific and technological challenges we are facing. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0321\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0321","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在无边无际的科学探索中,存在着一个隐秘但又容易获得的维度,它不仅常常令研究人员感到好奇和困惑,而且还提供了一把钥匙。这个维度就是手性,即描述物体手性的属性。手性的影响横跨多个研究领域,从电弱相互作用中的奇偶性违反到星系等超大型宏观系统。在这篇评论文章中,我们将深入探讨手性在科学探索中的力量,研究一些在不同尺度上证明手性是更好地理解我们世界的关键的例子。我们的目标是激励各个领域的研究人员在研究中寻求、实施和利用手性。多走一英里可能会比乍看起来更有收获,尤其是在我们面临当代科技挑战时,对新型功能材料的需求日益增长。本文是 "庆祝英国皇家学会牛顿国际奖学金 15 周年 "主题刊物的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking the hidden dimension: power of chirality in scientific exploration.

In the boundless landscape of scientific exploration, there exists a hidden, yet easily accessible, dimension that has often not only intrigued and puzzled researchers but also provided the key. This dimension is chirality, the property that describes the handedness of objects. The influence of chirality extends across diverse fields of study from the parity violation in electroweak interactions to the extremely large macroscopic systems such as galaxies. In this opinion piece, we will delve into the power of chirality in scientific exploration by examining some examples that, at different scales, demonstrate its role as a key to a better understanding of our world. Our goal is to incite researchers from all fields to seek, implement and utilize chirality in their research. Going this extra mile might be more rewarding than it seems at first glance, in particular with regard to the increasing demand for new functional materials in response to the contemporary scientific and technological challenges we are facing. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
Alkali metal cations enhance CO2 reduction by a Co molecular complex in a bipolar membrane electrolyzer. An alternative to petrochemicals: biomass electrovalorization. Carbon dioxide and hydrogen as building blocks for a sustainable interface of energy and chemistry. CO2 hydrogenation to methanol over Pt functionalized Hf-UiO-67 versus Zr-UiO-67. Contributions of heterogeneous catalysis enabling resource efficiency and circular economy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1