Mohamed K. S. El-Nagar, Mai I. Shahin, Mohammed F. El-Behairy, Ehab S. Taher, Mohamed F. El-Badawy, Marwa Sharaky, Dalal A. Abou El Ella, Khaled A. M. Abouzid and Mai Adel
{"title":"哒嗪酮类衍生物作为具有抗微生物活性的抗癌剂:分子设计、合成和生物学研究。","authors":"Mohamed K. S. El-Nagar, Mai I. Shahin, Mohammed F. El-Behairy, Ehab S. Taher, Mohamed F. El-Badawy, Marwa Sharaky, Dalal A. Abou El Ella, Khaled A. M. Abouzid and Mai Adel","doi":"10.1039/D4MD00481G","DOIUrl":null,"url":null,"abstract":"<p >Cancer patients undergoing chemotherapy are highly susceptible to infections owing to their compromised immune system, which also promotes cancer progression through inflammation. Thus, this study aimed to develop novel chemotherapeutic agents with both anticancer and antimicrobial properties. A series of diarylurea derivatives based on pyridazinone scaffolds were designed, synthesized, and characterized as surrogates for sorafenib. The synthesized compounds were tested for their antimicrobial activity and screened against 60 cancer cell lines at the National Cancer Institute (NCI). Compound <strong>10h</strong> exhibited potent antibacterial activity against <em>Staphylococcus aureus</em> (MIC = 16 μg mL<small><sup>−1</sup></small>), whereas compound <strong>8g</strong> showed significant antifungal activity against <em>Candida albicans</em> (MIC = 16 μg mL<small><sup>−1</sup></small>). Additionally, ten compounds were further evaluated for VEGFR-2 inhibition, with compound <strong>17a</strong> showing the best inhibitory activity. Compounds <strong>8f</strong>, <strong>10l</strong>, and <strong>17a</strong> demonstrated significant anticancer activity against melanoma, NSCLC, prostate cancer, and colon cancer, with growth inhibition percentages (GI%) ranging from 62.21% to 100.14%. Compounds <strong>10l</strong> and <strong>17a</strong> were selected for five-dose screening, displaying GI<small><sub>50</sub></small> values of 1.66–100 μM. Compound <strong>10l</strong> induced G0–G1 phase cell cycle arrest in the A549/ATCC cell line, increasing the cell population from 85.41% to 90.86%. Gene expression analysis showed that compound <strong>10l</strong> upregulated pro-apoptotic genes p53 and Bax and downregulated the anti-apoptotic gene Bcl-2. Molecular docking studies provided insights into the binding modes of the compounds to the VEGFR-2 enzyme. In conclusion, the pyridazinone-based diarylurea derivatives developed in this study show promise as dual-function antimicrobial and anticancer agents, warranting further investigation.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 10","pages":" 3529-3557"},"PeriodicalIF":3.5970,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyridazinone-based derivatives as anticancer agents endowed with anti-microbial activity: molecular design, synthesis, and biological investigation†\",\"authors\":\"Mohamed K. S. El-Nagar, Mai I. Shahin, Mohammed F. El-Behairy, Ehab S. Taher, Mohamed F. El-Badawy, Marwa Sharaky, Dalal A. Abou El Ella, Khaled A. M. Abouzid and Mai Adel\",\"doi\":\"10.1039/D4MD00481G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cancer patients undergoing chemotherapy are highly susceptible to infections owing to their compromised immune system, which also promotes cancer progression through inflammation. Thus, this study aimed to develop novel chemotherapeutic agents with both anticancer and antimicrobial properties. A series of diarylurea derivatives based on pyridazinone scaffolds were designed, synthesized, and characterized as surrogates for sorafenib. The synthesized compounds were tested for their antimicrobial activity and screened against 60 cancer cell lines at the National Cancer Institute (NCI). Compound <strong>10h</strong> exhibited potent antibacterial activity against <em>Staphylococcus aureus</em> (MIC = 16 μg mL<small><sup>−1</sup></small>), whereas compound <strong>8g</strong> showed significant antifungal activity against <em>Candida albicans</em> (MIC = 16 μg mL<small><sup>−1</sup></small>). Additionally, ten compounds were further evaluated for VEGFR-2 inhibition, with compound <strong>17a</strong> showing the best inhibitory activity. Compounds <strong>8f</strong>, <strong>10l</strong>, and <strong>17a</strong> demonstrated significant anticancer activity against melanoma, NSCLC, prostate cancer, and colon cancer, with growth inhibition percentages (GI%) ranging from 62.21% to 100.14%. Compounds <strong>10l</strong> and <strong>17a</strong> were selected for five-dose screening, displaying GI<small><sub>50</sub></small> values of 1.66–100 μM. Compound <strong>10l</strong> induced G0–G1 phase cell cycle arrest in the A549/ATCC cell line, increasing the cell population from 85.41% to 90.86%. Gene expression analysis showed that compound <strong>10l</strong> upregulated pro-apoptotic genes p53 and Bax and downregulated the anti-apoptotic gene Bcl-2. Molecular docking studies provided insights into the binding modes of the compounds to the VEGFR-2 enzyme. In conclusion, the pyridazinone-based diarylurea derivatives developed in this study show promise as dual-function antimicrobial and anticancer agents, warranting further investigation.</p>\",\"PeriodicalId\":88,\"journal\":{\"name\":\"MedChemComm\",\"volume\":\" 10\",\"pages\":\" 3529-3557\"},\"PeriodicalIF\":3.5970,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00481g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00481g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Pyridazinone-based derivatives as anticancer agents endowed with anti-microbial activity: molecular design, synthesis, and biological investigation†
Cancer patients undergoing chemotherapy are highly susceptible to infections owing to their compromised immune system, which also promotes cancer progression through inflammation. Thus, this study aimed to develop novel chemotherapeutic agents with both anticancer and antimicrobial properties. A series of diarylurea derivatives based on pyridazinone scaffolds were designed, synthesized, and characterized as surrogates for sorafenib. The synthesized compounds were tested for their antimicrobial activity and screened against 60 cancer cell lines at the National Cancer Institute (NCI). Compound 10h exhibited potent antibacterial activity against Staphylococcus aureus (MIC = 16 μg mL−1), whereas compound 8g showed significant antifungal activity against Candida albicans (MIC = 16 μg mL−1). Additionally, ten compounds were further evaluated for VEGFR-2 inhibition, with compound 17a showing the best inhibitory activity. Compounds 8f, 10l, and 17a demonstrated significant anticancer activity against melanoma, NSCLC, prostate cancer, and colon cancer, with growth inhibition percentages (GI%) ranging from 62.21% to 100.14%. Compounds 10l and 17a were selected for five-dose screening, displaying GI50 values of 1.66–100 μM. Compound 10l induced G0–G1 phase cell cycle arrest in the A549/ATCC cell line, increasing the cell population from 85.41% to 90.86%. Gene expression analysis showed that compound 10l upregulated pro-apoptotic genes p53 and Bax and downregulated the anti-apoptotic gene Bcl-2. Molecular docking studies provided insights into the binding modes of the compounds to the VEGFR-2 enzyme. In conclusion, the pyridazinone-based diarylurea derivatives developed in this study show promise as dual-function antimicrobial and anticancer agents, warranting further investigation.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.