优化医学影像数字放射技术中的放射防护。

{"title":"优化医学影像数字放射技术中的放射防护。","authors":"","doi":"10.1177/01466453231210646","DOIUrl":null,"url":null,"abstract":"<p><p>Use of medical imaging continues to increase, making the largest contribution to the exposure of populations from artificial sources of radiation worldwide. The principle of optimisation of protection is that 'the likelihood of incurring exposures, the number of people exposed, and the magnitude of their individual doses should all be kept as low as reasonably achievable (ALARA), taking into account economic and societal factors'. Optimisation for medical imaging involves more than ALARA - it requires keeping individual patient exposures to the minimum necessary to achieve the required medical objectives. In other words, the type, number, and quality of images must be adequate to obtain the information needed for diagnosis or intervention. Dose reductions for imaging or x-ray-image-guided procedures should not be used if they degrade image quality to the point where the images are inadequate for the clinical purpose. The move to digital imaging has provided versatile acquisition, post-processing, and presentation options, and enabled wide and often immediate availability of image information. However, because images are adjusted for optimal viewing, the appearance may not give any indication if the dose is higher than necessary. Nevertheless, digital images provide opportunities for further optimisation, and allow the application of artificial intelligence methods.Optimisation of radiological protection for digital radiology (radiography, fluoroscopy, and computed tomography) involves selection and installation of equipment, design and construction of facilities, choice of optimal equipment settings, day-to-day methods of operation, quality control programmes, and ensuring that all personnel receive proper initial and career-long training. The radiation dose levels that patients receive also have implications for doses to staff. As new imaging equipment incorporates more options to improve performance, it becomes more complex and less easily understood, so operators have to be given more extensive training. Ongoing monitoring, review, and analysis of performance is required that feeds back into the improvement and development of imaging protocols. Several different aspects relating to optimisation of protection that need to be developed are set out in this publication. The first is collaboration between radiologists/other radiological medical practitioners, radiographers/medical radiation technologists, and medical physicists, each of whom have key skills that can only contribute to the process effectively when individuals work together as a core team. The second is appropriate methodology and technology, with the knowledge and expertise required to use each effectively. The third relates to organisational processes which ensure that required tasks, such as equipment performance tests, patient dose surveys, and review of protocols, are carried out. There is wide variation in equipment, funding, and expertise around the world, and the majority of facilities do not have all the tools, professional teams, and expertise to fully embrace all the possibilities for optimisation. Therefore, this publication sets out broad levels for aspects of optimisation that different facilities might achieve, and through which they can progress incrementally: Level D - preliminary; Level C - basic; Level B - intermediate; and Level A - advanced. Guidance from professional societies can be invaluable in helping users to evaluate systems and aid in adoption of best practice. Examples of systems and activities that should be in place to achieve the different levels are set out. Imaging facilities can then evaluate the arrangements they already have, and use this publication to guide decisions about the next actions to be taken in optimising their imaging services.</p>","PeriodicalId":39551,"journal":{"name":"Annals of the ICRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of Radiological Protection in Digital Radiology Techniques for Medical Imaging.\",\"authors\":\"\",\"doi\":\"10.1177/01466453231210646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Use of medical imaging continues to increase, making the largest contribution to the exposure of populations from artificial sources of radiation worldwide. The principle of optimisation of protection is that 'the likelihood of incurring exposures, the number of people exposed, and the magnitude of their individual doses should all be kept as low as reasonably achievable (ALARA), taking into account economic and societal factors'. Optimisation for medical imaging involves more than ALARA - it requires keeping individual patient exposures to the minimum necessary to achieve the required medical objectives. In other words, the type, number, and quality of images must be adequate to obtain the information needed for diagnosis or intervention. Dose reductions for imaging or x-ray-image-guided procedures should not be used if they degrade image quality to the point where the images are inadequate for the clinical purpose. The move to digital imaging has provided versatile acquisition, post-processing, and presentation options, and enabled wide and often immediate availability of image information. However, because images are adjusted for optimal viewing, the appearance may not give any indication if the dose is higher than necessary. Nevertheless, digital images provide opportunities for further optimisation, and allow the application of artificial intelligence methods.Optimisation of radiological protection for digital radiology (radiography, fluoroscopy, and computed tomography) involves selection and installation of equipment, design and construction of facilities, choice of optimal equipment settings, day-to-day methods of operation, quality control programmes, and ensuring that all personnel receive proper initial and career-long training. The radiation dose levels that patients receive also have implications for doses to staff. As new imaging equipment incorporates more options to improve performance, it becomes more complex and less easily understood, so operators have to be given more extensive training. Ongoing monitoring, review, and analysis of performance is required that feeds back into the improvement and development of imaging protocols. Several different aspects relating to optimisation of protection that need to be developed are set out in this publication. The first is collaboration between radiologists/other radiological medical practitioners, radiographers/medical radiation technologists, and medical physicists, each of whom have key skills that can only contribute to the process effectively when individuals work together as a core team. The second is appropriate methodology and technology, with the knowledge and expertise required to use each effectively. The third relates to organisational processes which ensure that required tasks, such as equipment performance tests, patient dose surveys, and review of protocols, are carried out. There is wide variation in equipment, funding, and expertise around the world, and the majority of facilities do not have all the tools, professional teams, and expertise to fully embrace all the possibilities for optimisation. Therefore, this publication sets out broad levels for aspects of optimisation that different facilities might achieve, and through which they can progress incrementally: Level D - preliminary; Level C - basic; Level B - intermediate; and Level A - advanced. Guidance from professional societies can be invaluable in helping users to evaluate systems and aid in adoption of best practice. Examples of systems and activities that should be in place to achieve the different levels are set out. Imaging facilities can then evaluate the arrangements they already have, and use this publication to guide decisions about the next actions to be taken in optimising their imaging services.</p>\",\"PeriodicalId\":39551,\"journal\":{\"name\":\"Annals of the ICRP\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the ICRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01466453231210646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the ICRP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01466453231210646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医学影像的使用持续增加,是全球人口受人工辐射源照射的最大来源。优化防护的原则是 "考虑到经济和社会因素,发生辐照的可能性、受辐照的人数及其个人剂量的大小都应保持在可合理达到的最低水平(ALARA)"。医学成像的优化不仅仅涉及 ALARA - 它要求将患者的个人暴露量控制在实现所需的医学目标所需的最低水平。换句话说,图像的类型、数量和质量必须足以获取诊断或干预所需的信息。如果降低成像或 X 射线成像引导程序的剂量会降低图像质量,以至于图像无法满足临床目的,则不应使用这种方法。数字成像技术的发展提供了多样化的采集、后处理和显示选项,并使图像信息的获取范围更广,而且往往可以立即获得。然而,由于图像经过调整以达到最佳观看效果,因此外观可能无法显示剂量是否高于所需的剂量。然而,数字图像为进一步优化提供了机会,并允许应用人工智能方法。数字放射学(射线照相术、透视和计算机断层扫描)放射防护的优化涉及设备的选择和安装、设施的设计和建造、最佳设备设置的选择、日常操作方法、质量控制计划,以及确保所有人员接受适当的初始和终身培训。患者接受的辐射剂量水平也会对工作人员的剂量产生影响。由于新的成像设备采用了更多的选项来提高性能,因此变得更加复杂和不易理解,因此必须对操作人员进行更广泛的培训。需要对性能进行持续监测、审查和分析,并将其反馈到成像方案的改进和发展中。本出版物阐述了与优化保护有关的几个需要发展的不同方面。首先是放射科医生/其他放射医疗从业人员、放射技师/医疗放射技术人员和医学物理学家之间的合作,他们每个人都拥有关键技能,只有当个人作为核心团队一起工作时,才能有效地促进这一过程。其次是适当的方法和技术,以及有效使用每种方法和技术所需的知识和专业技能。第三是组织流程,确保设备性能测试、患者剂量调查和协议审查等必要任务得以执行。世界各地在设备、资金和专业知识方面存在很大差异,大多数医疗机构并不具备所有工具、专业团队和专业知识,无法完全掌握优化的所有可能性。因此,本出版物为不同设施可能实现的优化方面设定了大致的等级,它们可以通过这些等级逐步实现优化:D 级--初步;C 级--基础;B 级--中级;A 级--高级。专业协会提供的指导对于帮助用户评估系统和采用最佳实践非常有价值。本手册列举了为达到不同级别而应建立的系统和开展的活动。成像机构可以对其已有的安排进行评估,并利用本出版物指导决定优化成像服务的下一步行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimisation of Radiological Protection in Digital Radiology Techniques for Medical Imaging.

Use of medical imaging continues to increase, making the largest contribution to the exposure of populations from artificial sources of radiation worldwide. The principle of optimisation of protection is that 'the likelihood of incurring exposures, the number of people exposed, and the magnitude of their individual doses should all be kept as low as reasonably achievable (ALARA), taking into account economic and societal factors'. Optimisation for medical imaging involves more than ALARA - it requires keeping individual patient exposures to the minimum necessary to achieve the required medical objectives. In other words, the type, number, and quality of images must be adequate to obtain the information needed for diagnosis or intervention. Dose reductions for imaging or x-ray-image-guided procedures should not be used if they degrade image quality to the point where the images are inadequate for the clinical purpose. The move to digital imaging has provided versatile acquisition, post-processing, and presentation options, and enabled wide and often immediate availability of image information. However, because images are adjusted for optimal viewing, the appearance may not give any indication if the dose is higher than necessary. Nevertheless, digital images provide opportunities for further optimisation, and allow the application of artificial intelligence methods.Optimisation of radiological protection for digital radiology (radiography, fluoroscopy, and computed tomography) involves selection and installation of equipment, design and construction of facilities, choice of optimal equipment settings, day-to-day methods of operation, quality control programmes, and ensuring that all personnel receive proper initial and career-long training. The radiation dose levels that patients receive also have implications for doses to staff. As new imaging equipment incorporates more options to improve performance, it becomes more complex and less easily understood, so operators have to be given more extensive training. Ongoing monitoring, review, and analysis of performance is required that feeds back into the improvement and development of imaging protocols. Several different aspects relating to optimisation of protection that need to be developed are set out in this publication. The first is collaboration between radiologists/other radiological medical practitioners, radiographers/medical radiation technologists, and medical physicists, each of whom have key skills that can only contribute to the process effectively when individuals work together as a core team. The second is appropriate methodology and technology, with the knowledge and expertise required to use each effectively. The third relates to organisational processes which ensure that required tasks, such as equipment performance tests, patient dose surveys, and review of protocols, are carried out. There is wide variation in equipment, funding, and expertise around the world, and the majority of facilities do not have all the tools, professional teams, and expertise to fully embrace all the possibilities for optimisation. Therefore, this publication sets out broad levels for aspects of optimisation that different facilities might achieve, and through which they can progress incrementally: Level D - preliminary; Level C - basic; Level B - intermediate; and Level A - advanced. Guidance from professional societies can be invaluable in helping users to evaluate systems and aid in adoption of best practice. Examples of systems and activities that should be in place to achieve the different levels are set out. Imaging facilities can then evaluate the arrangements they already have, and use this publication to guide decisions about the next actions to be taken in optimising their imaging services.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of the ICRP
Annals of the ICRP Medicine-Public Health, Environmental and Occupational Health
CiteScore
4.10
自引率
0.00%
发文量
3
期刊介绍: The International Commission on Radiological Protection was founded in 1928 to advance for the public benefit the science of radiological protection. The ICRP provides recommendations and guidance on protection against the risks associated with ionising radiation, from artificial sources as widely used in medicine, general industry and nuclear enterprises, and from naturally occurring sources. These reports and recommendations are published six times each year on behalf of the ICRP as the journal Annals of the ICRP. Each issue provides in-depth coverage of a specific subject area.
期刊最新文献
Optimisation of Protection in Medical Imaging: Necessary, Challenging, and Possible. Optimisation of Radiological Protection in Digital Radiology Techniques for Medical Imaging. Discussion of uncertainties and the impact of different neutron RBEs on all solid cancer radiation incidence risks obtained from the Japanese A-bomb survivor data. ICRP 2021+1: THE SIXTH INTERNATIONAL SYMPOSIUM ON THE SYSTEM OF RADIOLOGICAL PROTECTION. The 2021 Bo Lindell Lecture: Inclusive, accountable, transparent: the direction we should take for the benefit of present and future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1