Ali H. Khalbas , Talib M. Albayati , Nisreen S. Ali , Issam K. Salih
{"title":"使用介孔二氧化硅纳米颗粒作为给药系统的药物负载方法和动力学释放模型:综述","authors":"Ali H. Khalbas , Talib M. Albayati , Nisreen S. Ali , Issam K. Salih","doi":"10.1016/j.sajce.2024.08.013","DOIUrl":null,"url":null,"abstract":"<div><p>Oral drug administration remains one of the most convenient routes due to its Simplicity, high patient compliance, and cost-effectiveness. However, many medicinal products available on the market exhibit poor water solubility, which adversely affects the dissolution rate of drugs in biological fluids. Drug loading is a promising strategy to produce highly stable amorphous drugs with improved dissolution rates, solubility, and bioavailability. Mesoporous silica nanoparticles (MSNs) are particularly advantageous due to their tunable surface area, pore size, and pore volume, making them suitable to load various molecules such as drugs, genes, and proteins. The use of mathematical models is crucial for predicting and analyzing the release profile of active molecules and diffusion patterns within delivery systems. This enables the design and development of new systems with more desirable release patterns. This review provides an overview of MSNs and drug loading methods, discusses the mechanisms of drug release and release kinetic models using mesoporous carriers, and highlights critical considerations in designing MSNs, such as particle stability and cytotoxicity.</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"50 ","pages":"Pages 261-280"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1026918524001021/pdfft?md5=3a307555083b49f747b33565ee046c0d&pid=1-s2.0-S1026918524001021-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review\",\"authors\":\"Ali H. Khalbas , Talib M. Albayati , Nisreen S. Ali , Issam K. Salih\",\"doi\":\"10.1016/j.sajce.2024.08.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oral drug administration remains one of the most convenient routes due to its Simplicity, high patient compliance, and cost-effectiveness. However, many medicinal products available on the market exhibit poor water solubility, which adversely affects the dissolution rate of drugs in biological fluids. Drug loading is a promising strategy to produce highly stable amorphous drugs with improved dissolution rates, solubility, and bioavailability. Mesoporous silica nanoparticles (MSNs) are particularly advantageous due to their tunable surface area, pore size, and pore volume, making them suitable to load various molecules such as drugs, genes, and proteins. The use of mathematical models is crucial for predicting and analyzing the release profile of active molecules and diffusion patterns within delivery systems. This enables the design and development of new systems with more desirable release patterns. This review provides an overview of MSNs and drug loading methods, discusses the mechanisms of drug release and release kinetic models using mesoporous carriers, and highlights critical considerations in designing MSNs, such as particle stability and cytotoxicity.</p></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"50 \",\"pages\":\"Pages 261-280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1026918524001021/pdfft?md5=3a307555083b49f747b33565ee046c0d&pid=1-s2.0-S1026918524001021-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1026918524001021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524001021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review
Oral drug administration remains one of the most convenient routes due to its Simplicity, high patient compliance, and cost-effectiveness. However, many medicinal products available on the market exhibit poor water solubility, which adversely affects the dissolution rate of drugs in biological fluids. Drug loading is a promising strategy to produce highly stable amorphous drugs with improved dissolution rates, solubility, and bioavailability. Mesoporous silica nanoparticles (MSNs) are particularly advantageous due to their tunable surface area, pore size, and pore volume, making them suitable to load various molecules such as drugs, genes, and proteins. The use of mathematical models is crucial for predicting and analyzing the release profile of active molecules and diffusion patterns within delivery systems. This enables the design and development of new systems with more desirable release patterns. This review provides an overview of MSNs and drug loading methods, discusses the mechanisms of drug release and release kinetic models using mesoporous carriers, and highlights critical considerations in designing MSNs, such as particle stability and cytotoxicity.
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.