油井渗漏定量评估,第一部分:水泥应力演变

IF 3.3 2区 工程技术 Q3 ENERGY & FUELS Geomechanics for Energy and the Environment Pub Date : 2024-09-04 DOI:10.1016/j.gete.2024.100586
A. Moghadam, M. Loizzo
{"title":"油井渗漏定量评估,第一部分:水泥应力演变","authors":"A. Moghadam,&nbsp;M. Loizzo","doi":"10.1016/j.gete.2024.100586","DOIUrl":null,"url":null,"abstract":"<div><p>A damaged cement sheath in wells can open a leakage pathway to shallow freshwater aquifers and atmosphere. Quantitative assessment of leakage along wells has become an area of interest for both the industry and the regulatory bodies. The well leakage can be of importance in both active and legacy wells. In order to estimate leakage through cement sheaths, the size of the leakage pathway and the damage in the cement sheath must be estimated. In this work, we have developed a hydro-thermo-mechanically coupled near-well model that aims to calculate the evolution of cement’s stress as it cures. This process takes into account the cement’s gradual increase in stiffness, chemical shrinkage, and the heat of hydration. The results are verified using lab measured cement stress and pore pressure data from the literature. A case study was developed based on a low-enthalpy geothermal doublet in the Netherlands. The results show that during the cold water injection, an outer microannulus may open to 60 µm. The presence of an external source of water and formation stiffness are of significant importance in determining the damage to the cement sheath. The heat of hydration in cement increases the temperature of cement during curing. The subsequent drop in temperature due to drilling or completion reduces the cement stress and exacerbates the damage to the cement sheath. The producer well may not form a microannuli, however shear and cyclical failure may be of higher likelihood. The modelling framework presented here allows for estimation of annular cement stress in the well. The analysis provides quantitative estimates of the size of the leakage pathway along a well that can be used to estimate well leakge. Quantitative estimate of well leakage provides crucial information for quantitative risk analysis and provides a framework to optimize well operations to minimize leakage risk.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100586"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative assessment of well leakage, part I: Cement stress evolution\",\"authors\":\"A. Moghadam,&nbsp;M. Loizzo\",\"doi\":\"10.1016/j.gete.2024.100586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A damaged cement sheath in wells can open a leakage pathway to shallow freshwater aquifers and atmosphere. Quantitative assessment of leakage along wells has become an area of interest for both the industry and the regulatory bodies. The well leakage can be of importance in both active and legacy wells. In order to estimate leakage through cement sheaths, the size of the leakage pathway and the damage in the cement sheath must be estimated. In this work, we have developed a hydro-thermo-mechanically coupled near-well model that aims to calculate the evolution of cement’s stress as it cures. This process takes into account the cement’s gradual increase in stiffness, chemical shrinkage, and the heat of hydration. The results are verified using lab measured cement stress and pore pressure data from the literature. A case study was developed based on a low-enthalpy geothermal doublet in the Netherlands. The results show that during the cold water injection, an outer microannulus may open to 60 µm. The presence of an external source of water and formation stiffness are of significant importance in determining the damage to the cement sheath. The heat of hydration in cement increases the temperature of cement during curing. The subsequent drop in temperature due to drilling or completion reduces the cement stress and exacerbates the damage to the cement sheath. The producer well may not form a microannuli, however shear and cyclical failure may be of higher likelihood. The modelling framework presented here allows for estimation of annular cement stress in the well. The analysis provides quantitative estimates of the size of the leakage pathway along a well that can be used to estimate well leakge. Quantitative estimate of well leakage provides crucial information for quantitative risk analysis and provides a framework to optimize well operations to minimize leakage risk.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"40 \",\"pages\":\"Article 100586\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380824000534\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000534","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

水井中受损的水泥护套可为浅层淡水含水层和大气打开一条渗漏通道。对油井泄漏的定量评估已成为业界和监管机构共同关注的领域。油井渗漏对使用中的油井和遗留油井都很重要。为了估算穿过水泥护套的渗漏,必须估算渗漏途径的大小和水泥护套的损坏程度。在这项工作中,我们开发了一种水热力学耦合近井模型,旨在计算水泥固化时的应力演变。这一过程考虑了水泥刚度的逐渐增加、化学收缩和水化热。计算结果通过实验室测量的水泥应力和文献中的孔隙压力数据进行验证。以荷兰的低焓地热双层岩层为基础进行了案例研究。结果表明,在冷水注入过程中,外部微空洞可能会张开到 60 µm。外部水源的存在和地层刚度对决定水泥护套的损坏非常重要。水泥中的水化热会在固化过程中提高水泥的温度。随后由于钻井或完井造成的温度下降降低了水泥应力,加剧了水泥护套的损坏。采油井可能不会形成微裂缝,但剪切和周期性失效的可能性较大。本文介绍的建模框架可以估算井内环形水泥应力。该分析提供了沿油井渗漏通道大小的定量估算,可用于估算油井渗漏。对油井渗漏的定量估算为定量风险分析提供了重要信息,并为优化油井作业提供了框架,从而最大限度地降低渗漏风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative assessment of well leakage, part I: Cement stress evolution

A damaged cement sheath in wells can open a leakage pathway to shallow freshwater aquifers and atmosphere. Quantitative assessment of leakage along wells has become an area of interest for both the industry and the regulatory bodies. The well leakage can be of importance in both active and legacy wells. In order to estimate leakage through cement sheaths, the size of the leakage pathway and the damage in the cement sheath must be estimated. In this work, we have developed a hydro-thermo-mechanically coupled near-well model that aims to calculate the evolution of cement’s stress as it cures. This process takes into account the cement’s gradual increase in stiffness, chemical shrinkage, and the heat of hydration. The results are verified using lab measured cement stress and pore pressure data from the literature. A case study was developed based on a low-enthalpy geothermal doublet in the Netherlands. The results show that during the cold water injection, an outer microannulus may open to 60 µm. The presence of an external source of water and formation stiffness are of significant importance in determining the damage to the cement sheath. The heat of hydration in cement increases the temperature of cement during curing. The subsequent drop in temperature due to drilling or completion reduces the cement stress and exacerbates the damage to the cement sheath. The producer well may not form a microannuli, however shear and cyclical failure may be of higher likelihood. The modelling framework presented here allows for estimation of annular cement stress in the well. The analysis provides quantitative estimates of the size of the leakage pathway along a well that can be used to estimate well leakge. Quantitative estimate of well leakage provides crucial information for quantitative risk analysis and provides a framework to optimize well operations to minimize leakage risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
期刊最新文献
Numerical modeling of hydro-mechanical processes during hydraulic testing of pre-existing fractures at the Grimsel Test Site, Switzerland A finite discrete element approach for modeling of desiccation fracturing around underground openings in Opalinus clay Comparison between new enhanced thermal response test methods for underground heat exchanger sizing Early and post-stage piping erosion in bentonite buffer materials exposed to groundwater inflow Dam impoundment near active faults in areas with high seismic potential: Case studies from Bisri and Mseilha dams, Lebanon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1