Yuan Li, Lei Zhao, Hao Dang, Peiyao Dou, Youzhi Wu, Fen Ran
{"title":"为锌金属电池设计大分子改性剂","authors":"Yuan Li, Lei Zhao, Hao Dang, Peiyao Dou, Youzhi Wu, Fen Ran","doi":"10.1016/j.mser.2024.100844","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, aqueous zinc metal batteries have greatly intrigued scientists; however, zinc anode suffers from many issues such as dendrites, hydrogen evolution, and passivation. To address the dilemma of zinc anode, macromolecular interfacial modifiers are employed to improve the stability of zinc anode. In this review, it is summarized that macromolecular modifiers facilitate highly stable zinc anode in aqueous electrolyte. Combined with the issues of zinc anode and the characteristics of macromolecules, the advantages of macromolecules as interface modifiers are discussed. Moreover, the effects of macromolecules modified electrolyte, zinc anode, separator, and current collector on the interfacial properties of zinc anode are discussed, respectively. The current challenges and future research directions are proposed from the perspective of the application of macromolecules in zinc powder anode, the relationship between the structure of macromolecules and the deeper principle of stabilizing zinc anode, and the application of macromolecular modifiers in other metal anodes, etc.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"161 ","pages":"Article 100844"},"PeriodicalIF":31.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing macromolecular modifiers for zinc metal batteries\",\"authors\":\"Yuan Li, Lei Zhao, Hao Dang, Peiyao Dou, Youzhi Wu, Fen Ran\",\"doi\":\"10.1016/j.mser.2024.100844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, aqueous zinc metal batteries have greatly intrigued scientists; however, zinc anode suffers from many issues such as dendrites, hydrogen evolution, and passivation. To address the dilemma of zinc anode, macromolecular interfacial modifiers are employed to improve the stability of zinc anode. In this review, it is summarized that macromolecular modifiers facilitate highly stable zinc anode in aqueous electrolyte. Combined with the issues of zinc anode and the characteristics of macromolecules, the advantages of macromolecules as interface modifiers are discussed. Moreover, the effects of macromolecules modified electrolyte, zinc anode, separator, and current collector on the interfacial properties of zinc anode are discussed, respectively. The current challenges and future research directions are proposed from the perspective of the application of macromolecules in zinc powder anode, the relationship between the structure of macromolecules and the deeper principle of stabilizing zinc anode, and the application of macromolecular modifiers in other metal anodes, etc.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"161 \",\"pages\":\"Article 100844\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24000743\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000743","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing macromolecular modifiers for zinc metal batteries
In recent years, aqueous zinc metal batteries have greatly intrigued scientists; however, zinc anode suffers from many issues such as dendrites, hydrogen evolution, and passivation. To address the dilemma of zinc anode, macromolecular interfacial modifiers are employed to improve the stability of zinc anode. In this review, it is summarized that macromolecular modifiers facilitate highly stable zinc anode in aqueous electrolyte. Combined with the issues of zinc anode and the characteristics of macromolecules, the advantages of macromolecules as interface modifiers are discussed. Moreover, the effects of macromolecules modified electrolyte, zinc anode, separator, and current collector on the interfacial properties of zinc anode are discussed, respectively. The current challenges and future research directions are proposed from the perspective of the application of macromolecules in zinc powder anode, the relationship between the structure of macromolecules and the deeper principle of stabilizing zinc anode, and the application of macromolecular modifiers in other metal anodes, etc.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.