根部渗出物对茼蒿对纳米塑料颗粒和四环素共同污染的毒性反应的影响

IF 7.6 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Pollution Pub Date : 2024-09-07 DOI:10.1016/j.envpol.2024.124916
Ling Xiao, Hongchang Peng, Zhengguo Song, Hanxuan Liu, Youming Dong, Zitian Lin, Minling Gao
{"title":"根部渗出物对茼蒿对纳米塑料颗粒和四环素共同污染的毒性反应的影响","authors":"Ling Xiao, Hongchang Peng, Zhengguo Song, Hanxuan Liu, Youming Dong, Zitian Lin, Minling Gao","doi":"10.1016/j.envpol.2024.124916","DOIUrl":null,"url":null,"abstract":"Nano polystyrene (PS) particles and antibiotics universally co-exist, posing a threat to crop plants and hence human health, nevertheless, there is limited research on their combined toxic effects along with major influential factors, especially root exudates, on crop plants. This study aimed to investigate the response of L. to the co-pollution of nanoplastics and tetracycline (TC), as well as the effect of root exudates on this response. Based on a hydroponic experiment, the biochemical and physiological indices of L. were measured after 7 days of exposure. Results revealed that the co-pollution of TC and PS caused significant oxidative damage to the plants, resulting in reduced biomass. Amongst the two contaminants, TC played a more prominent role. PS could enter the root tissue, and the uptake of TC and PS by plant roots was synergetic. Malic acid, oxalic acid, and formic acid could explain 65.1% of the variation in biochemical parameters and biomass of the roots. These compounds affected the photosynthesis and biomass of L. by gradually lowering root reactive oxygen species (ROS) and leaf ROS. In contrast, the impact of rhizobacteria on the toxic response of the plants was relatively minor. These findings suggested that root exudates could alleviate the toxic response of plants to the co-pollution of TC and PS. This study enhances our understanding of the role of root exudates, providing insights for agricultural management and ensuring food safety.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of root exudates on the toxic response of Chrysanthemum coronarium L. to the co-pollution of nanoplastic particles and tetracycline\",\"authors\":\"Ling Xiao, Hongchang Peng, Zhengguo Song, Hanxuan Liu, Youming Dong, Zitian Lin, Minling Gao\",\"doi\":\"10.1016/j.envpol.2024.124916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano polystyrene (PS) particles and antibiotics universally co-exist, posing a threat to crop plants and hence human health, nevertheless, there is limited research on their combined toxic effects along with major influential factors, especially root exudates, on crop plants. This study aimed to investigate the response of L. to the co-pollution of nanoplastics and tetracycline (TC), as well as the effect of root exudates on this response. Based on a hydroponic experiment, the biochemical and physiological indices of L. were measured after 7 days of exposure. Results revealed that the co-pollution of TC and PS caused significant oxidative damage to the plants, resulting in reduced biomass. Amongst the two contaminants, TC played a more prominent role. PS could enter the root tissue, and the uptake of TC and PS by plant roots was synergetic. Malic acid, oxalic acid, and formic acid could explain 65.1% of the variation in biochemical parameters and biomass of the roots. These compounds affected the photosynthesis and biomass of L. by gradually lowering root reactive oxygen species (ROS) and leaf ROS. In contrast, the impact of rhizobacteria on the toxic response of the plants was relatively minor. These findings suggested that root exudates could alleviate the toxic response of plants to the co-pollution of TC and PS. This study enhances our understanding of the role of root exudates, providing insights for agricultural management and ensuring food safety.\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envpol.2024.124916\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.124916","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

纳米聚苯乙烯(PS)颗粒和抗生素普遍共存,对作物植物和人类健康构成威胁,然而,有关它们的综合毒性效应以及主要影响因素(尤其是根系渗出物)对作物植物的影响的研究却很有限。本研究旨在调查鳞茎对纳米塑料和四环素(TC)共同污染的反应,以及根系渗出物对这种反应的影响。在水培实验的基础上,测量了鳞茎接触纳米塑料 7 天后的生化和生理指标。结果显示,TC 和 PS 的共同污染对植物造成了严重的氧化损伤,导致生物量减少。在这两种污染物中,TC 的作用更为突出。PS 可以进入根系组织,植物根系对 TC 和 PS 的吸收具有协同作用。苹果酸、草酸和甲酸可以解释 65.1%的根系生化指标和生物量变化。这些化合物通过逐渐降低根部活性氧(ROS)和叶片活性氧(ROS)来影响鳞茎的光合作用和生物量。相比之下,根瘤菌对植物毒性反应的影响相对较小。这些发现表明,根系渗出液可以减轻植物对 TC 和 PS 共同污染的毒性反应。这项研究加深了我们对根渗出物作用的认识,为农业管理和确保食品安全提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of root exudates on the toxic response of Chrysanthemum coronarium L. to the co-pollution of nanoplastic particles and tetracycline
Nano polystyrene (PS) particles and antibiotics universally co-exist, posing a threat to crop plants and hence human health, nevertheless, there is limited research on their combined toxic effects along with major influential factors, especially root exudates, on crop plants. This study aimed to investigate the response of L. to the co-pollution of nanoplastics and tetracycline (TC), as well as the effect of root exudates on this response. Based on a hydroponic experiment, the biochemical and physiological indices of L. were measured after 7 days of exposure. Results revealed that the co-pollution of TC and PS caused significant oxidative damage to the plants, resulting in reduced biomass. Amongst the two contaminants, TC played a more prominent role. PS could enter the root tissue, and the uptake of TC and PS by plant roots was synergetic. Malic acid, oxalic acid, and formic acid could explain 65.1% of the variation in biochemical parameters and biomass of the roots. These compounds affected the photosynthesis and biomass of L. by gradually lowering root reactive oxygen species (ROS) and leaf ROS. In contrast, the impact of rhizobacteria on the toxic response of the plants was relatively minor. These findings suggested that root exudates could alleviate the toxic response of plants to the co-pollution of TC and PS. This study enhances our understanding of the role of root exudates, providing insights for agricultural management and ensuring food safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Pollution
Environmental Pollution 环境科学-环境科学
CiteScore
16.00
自引率
6.70%
发文量
2082
审稿时长
2.9 months
期刊介绍: Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health. Subject areas include, but are not limited to: • Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies; • Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change; • Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects; • Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects; • Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest; • New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.
期刊最新文献
Corrigendum to 'Factors influencing microplastic abundances in the sediments of a seagrass-dominated tropical atoll' Environmental Pollution (2024) 357, 124483. Corrigendum to ‘Estimates of the global burden of cancer-related deaths attributable to residential exposure to petrochemical industrial complexes from 2020 to 2040’ [Environ. Pollut. 350 (2024) 123955] Persistent organic pollutants and metabolic diseases: From the perspective of lipid droplets Unraveling soil geochemical, geophysical, and microbial determinants of the vertical distribution of organic phosphorus pesticide pollutants Vertical distribution of aerosols and association with atmospheric boundary layer structures during regional aerosol transport over central China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1