以碱金属和酰胺对为媒介的化学循环氨分解,用于生产 H2 和热能储存

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-09-09 DOI:10.1002/aenm.202401252
Sheng Feng, Wenbo Gao, Runze Wang, Yeqin Guan, Han Wu, Qianru Wang, Hujun Cao, Lin Liu, Jianping Guo, Ping Chen
{"title":"以碱金属和酰胺对为媒介的化学循环氨分解,用于生产 H2 和热能储存","authors":"Sheng Feng, Wenbo Gao, Runze Wang, Yeqin Guan, Han Wu, Qianru Wang, Hujun Cao, Lin Liu, Jianping Guo, Ping Chen","doi":"10.1002/aenm.202401252","DOIUrl":null,"url":null,"abstract":"Ammonia decomposition to H<sub>2</sub> (ADH) is one of the key reactions in the ammonia-based energy system. Recent research has been focused on developing more active and affordable catalysts, however, few can operate below 500 °C and typically require the expensive metal ruthenium. Herein, a fundamentally different thermal ADH via a chemical looping process (CLADH) mediated by alkali metal and its amide pairs, which can work under lower temperatures than the catalytic process, is reported. This CLADH consists of two steps: 1) Ammoniation step ̶ NH<sub>3</sub> reacts with Na or K to generate NaNH<sub>2</sub> or KNH<sub>2</sub>, respectively, accompanied by releasing one-third of H<sub>2</sub> in NH<sub>3</sub> at room temperature; 2) Decomposition step ̶ NaNH<sub>2</sub> or KNH<sub>2</sub> decomposes to N<sub>2</sub> and H<sub>2</sub> with the regeneration of Na or K which can be performed above 275 °C. Additionally, due to the significant enthalpy change in the two-step reactions of this CLADH, −78.0 kJ mol<sup>−1</sup> for the first step and 123.9 kJ mol<sup>−1</sup> for the second, using the Na and NaNH<sub>2</sub> pair—suggest potential for thermal energy storage. This work not only reports an alternative route to produce H<sub>2</sub> from NH<sub>3</sub>, but also unravels the potential of chemical looping process for thermal energy storage.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Looping Ammonia Decomposition Mediated by Alkali Metal and Amide Pairs for H2 Production and Thermal Energy Storage\",\"authors\":\"Sheng Feng, Wenbo Gao, Runze Wang, Yeqin Guan, Han Wu, Qianru Wang, Hujun Cao, Lin Liu, Jianping Guo, Ping Chen\",\"doi\":\"10.1002/aenm.202401252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ammonia decomposition to H<sub>2</sub> (ADH) is one of the key reactions in the ammonia-based energy system. Recent research has been focused on developing more active and affordable catalysts, however, few can operate below 500 °C and typically require the expensive metal ruthenium. Herein, a fundamentally different thermal ADH via a chemical looping process (CLADH) mediated by alkali metal and its amide pairs, which can work under lower temperatures than the catalytic process, is reported. This CLADH consists of two steps: 1) Ammoniation step ̶ NH<sub>3</sub> reacts with Na or K to generate NaNH<sub>2</sub> or KNH<sub>2</sub>, respectively, accompanied by releasing one-third of H<sub>2</sub> in NH<sub>3</sub> at room temperature; 2) Decomposition step ̶ NaNH<sub>2</sub> or KNH<sub>2</sub> decomposes to N<sub>2</sub> and H<sub>2</sub> with the regeneration of Na or K which can be performed above 275 °C. Additionally, due to the significant enthalpy change in the two-step reactions of this CLADH, −78.0 kJ mol<sup>−1</sup> for the first step and 123.9 kJ mol<sup>−1</sup> for the second, using the Na and NaNH<sub>2</sub> pair—suggest potential for thermal energy storage. This work not only reports an alternative route to produce H<sub>2</sub> from NH<sub>3</sub>, but also unravels the potential of chemical looping process for thermal energy storage.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202401252\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202401252","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氨分解为 H2(ADH)是以氨为基础的能源系统中的关键反应之一。近期研究的重点是开发活性更强、价格更合理的催化剂,但能在 500 °C 以下运行的催化剂很少,而且通常需要昂贵的金属钌。本文报告了一种由碱金属及其酰胺对介导的根本不同的通过化学循环过程(CLADH)的热 ADH,它可以在比催化过程更低的温度下工作。这种 CLADH 包括两个步骤:1) 氨化步骤 ̶ NH3 与 Na 或 K 反应,分别生成 NaNH2 或 KNH2,同时在室温下释放出 NH3 中三分之一的 H2;2) 分解步骤 ̶ NaNH2 或 KNH2 分解为 N2 和 H2,Na 或 K 可以在 275 °C 以上再生。此外,由于这种 CLADH 两步反应的焓值变化很大(第一步为 -78.0 kJ mol-1,第二步为 123.9 kJ mol-1),因此使用 Na 和 NaNH2 对热能储存具有潜力。这项工作不仅报告了从 NH3 生产 H2 的另一条途径,还揭示了化学循环过程在热能储存方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical Looping Ammonia Decomposition Mediated by Alkali Metal and Amide Pairs for H2 Production and Thermal Energy Storage
Ammonia decomposition to H2 (ADH) is one of the key reactions in the ammonia-based energy system. Recent research has been focused on developing more active and affordable catalysts, however, few can operate below 500 °C and typically require the expensive metal ruthenium. Herein, a fundamentally different thermal ADH via a chemical looping process (CLADH) mediated by alkali metal and its amide pairs, which can work under lower temperatures than the catalytic process, is reported. This CLADH consists of two steps: 1) Ammoniation step ̶ NH3 reacts with Na or K to generate NaNH2 or KNH2, respectively, accompanied by releasing one-third of H2 in NH3 at room temperature; 2) Decomposition step ̶ NaNH2 or KNH2 decomposes to N2 and H2 with the regeneration of Na or K which can be performed above 275 °C. Additionally, due to the significant enthalpy change in the two-step reactions of this CLADH, −78.0 kJ mol−1 for the first step and 123.9 kJ mol−1 for the second, using the Na and NaNH2 pair—suggest potential for thermal energy storage. This work not only reports an alternative route to produce H2 from NH3, but also unravels the potential of chemical looping process for thermal energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Revolutionizing Oxygen Evolution Reaction Catalysts: Efficient and Ultrastable Interstitial W-Doped NiFe-LDHs/MOFs through Controlled Topological Conversion of Metal-Organic Frameworks (Adv. Energy Mater. 37/2024) A Bio-Inspired Dendritic MoOx Electrocatalyst for Efficient Electrochemical Nitrate Reduction to Ammonia (Adv. Energy Mater. 37/2024) Topological-Insulator Nanocomposite and Graphite-Like Tribo-Charge-Accumulating Fabric Enabling High-performance Non-Contact Stretchable and Textile-Based Triboelectric Nanogenerators with Robust Charge Retention (Adv. Energy Mater. 37/2024) Masthead: (Adv. Energy Mater. 37/2024) Advancing Charge Density in Temperature-Dependent Amphiphile Metal–Organic Polyhedra-Based Triboelectric Nanogenerators (Adv. Energy Mater. 37/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1