安全、简便、直接地制备聚(N-乙烯基咪唑)/聚丙烯腈纳米纤维改性隔板,作为实现耐用锂硫电池的高效聚硫屏障

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-09 DOI:10.1002/adfm.202411872
Chenxiao Lin, Ping Feng, Daiqing Wang, Xiaoqin Chen, Yuning Fang, Yiwei Gao, Yong Zheng, Yan Yan, Mingkai Liu
{"title":"安全、简便、直接地制备聚(N-乙烯基咪唑)/聚丙烯腈纳米纤维改性隔板,作为实现耐用锂硫电池的高效聚硫屏障","authors":"Chenxiao Lin, Ping Feng, Daiqing Wang, Xiaoqin Chen, Yuning Fang, Yiwei Gao, Yong Zheng, Yan Yan, Mingkai Liu","doi":"10.1002/adfm.202411872","DOIUrl":null,"url":null,"abstract":"Lithium–sulfur (Li–S) batteries are gaining tremendous attention as promising energy storage solutions due to their impressive energy density and the affordability of sulfur. However, the practical use of Li–S batteries encounter major obstacles such as the polysulfide shuttle effect, which leads to capacity loss and decreased cycling stability. Herein, a polyethylene imidazole/polyacrylonitrile (PVIMPAN) nanofibers-modified Celgard separator is constructed via a facile electrospinning strategy and used as a polysulfides barrier for Li–S batteries. The electron-deficient imidazole groups introduced on the surface of PVIMPAN separators create a barrier that prevents polysulfide shuttling and extends cycle life. Additionally, the developed PVIMPAN separator exhibits a significantly enhanced Li<sup>+</sup> transfer number of 0.60, compared to the commercial Celgard separator (0.20). This enhancement can be attributed to the strong binding energy between imidazole groups and bis(trifluoromethanesulphonyl)imide anion, leading to improved Li plating and stripping performance. Consequently, incorporating the PVIMPAN separator into Li–S batteries enable the achievement of a discharge capacity of 786.0 mAh g<sup>−1</sup> with close to 100% Coulombic efficiency after 500 cycles at 1C (25 °C). It is believed that this work can provide valuable insights for designing suitable and robust separators for metal–sulfur batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe, Facile, and Straightforward Fabrication of Poly(N-vinyl imidazole)/Polyacrylonitrile Nanofiber Modified Separator as Efficient Polysulfide Barrier Toward Durable Lithium–Sulfur Batteries\",\"authors\":\"Chenxiao Lin, Ping Feng, Daiqing Wang, Xiaoqin Chen, Yuning Fang, Yiwei Gao, Yong Zheng, Yan Yan, Mingkai Liu\",\"doi\":\"10.1002/adfm.202411872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium–sulfur (Li–S) batteries are gaining tremendous attention as promising energy storage solutions due to their impressive energy density and the affordability of sulfur. However, the practical use of Li–S batteries encounter major obstacles such as the polysulfide shuttle effect, which leads to capacity loss and decreased cycling stability. Herein, a polyethylene imidazole/polyacrylonitrile (PVIMPAN) nanofibers-modified Celgard separator is constructed via a facile electrospinning strategy and used as a polysulfides barrier for Li–S batteries. The electron-deficient imidazole groups introduced on the surface of PVIMPAN separators create a barrier that prevents polysulfide shuttling and extends cycle life. Additionally, the developed PVIMPAN separator exhibits a significantly enhanced Li<sup>+</sup> transfer number of 0.60, compared to the commercial Celgard separator (0.20). This enhancement can be attributed to the strong binding energy between imidazole groups and bis(trifluoromethanesulphonyl)imide anion, leading to improved Li plating and stripping performance. Consequently, incorporating the PVIMPAN separator into Li–S batteries enable the achievement of a discharge capacity of 786.0 mAh g<sup>−1</sup> with close to 100% Coulombic efficiency after 500 cycles at 1C (25 °C). It is believed that this work can provide valuable insights for designing suitable and robust separators for metal–sulfur batteries.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202411872\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202411872","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂硫(Li-S)电池因其令人印象深刻的能量密度和硫的可负担性而成为前景广阔的储能解决方案,受到广泛关注。然而,锂硫电池在实际使用中遇到了一些主要障碍,如多硫化物穿梭效应会导致容量损失和循环稳定性降低。本文通过一种简便的电纺丝策略,构建了一种聚乙烯咪唑/聚丙烯腈(PVIMPAN)纳米纤维改性的 Celgard 隔膜,并将其用作锂-S 电池的多硫化物屏障。PVIMPAN 隔膜表面引入的缺电子咪唑基团形成了一道屏障,可防止多硫化物穿梭并延长循环寿命。此外,与商用 Celgard 分离剂(0.20)相比,所开发的 PVIMPAN 分离剂的 Li+ 转移数显著提高,达到 0.60。这种增强可归因于咪唑基团与双(三氟甲基磺酰基)亚胺阴离子之间强大的结合能,从而提高了锂的电镀和剥离性能。因此,在锂-S 电池中加入 PVIMPAN 隔膜后,在 1C (25 °C)条件下循环 500 次后,放电容量可达 786.0 mAh g-1,库仑效率接近 100%。相信这项工作能为金属硫电池设计合适而坚固的隔膜提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safe, Facile, and Straightforward Fabrication of Poly(N-vinyl imidazole)/Polyacrylonitrile Nanofiber Modified Separator as Efficient Polysulfide Barrier Toward Durable Lithium–Sulfur Batteries
Lithium–sulfur (Li–S) batteries are gaining tremendous attention as promising energy storage solutions due to their impressive energy density and the affordability of sulfur. However, the practical use of Li–S batteries encounter major obstacles such as the polysulfide shuttle effect, which leads to capacity loss and decreased cycling stability. Herein, a polyethylene imidazole/polyacrylonitrile (PVIMPAN) nanofibers-modified Celgard separator is constructed via a facile electrospinning strategy and used as a polysulfides barrier for Li–S batteries. The electron-deficient imidazole groups introduced on the surface of PVIMPAN separators create a barrier that prevents polysulfide shuttling and extends cycle life. Additionally, the developed PVIMPAN separator exhibits a significantly enhanced Li+ transfer number of 0.60, compared to the commercial Celgard separator (0.20). This enhancement can be attributed to the strong binding energy between imidazole groups and bis(trifluoromethanesulphonyl)imide anion, leading to improved Li plating and stripping performance. Consequently, incorporating the PVIMPAN separator into Li–S batteries enable the achievement of a discharge capacity of 786.0 mAh g−1 with close to 100% Coulombic efficiency after 500 cycles at 1C (25 °C). It is believed that this work can provide valuable insights for designing suitable and robust separators for metal–sulfur batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1