Bela B. Berking, Sjoerd J. Rijpkema, Bai H. E. Zhang, Arbaaz Sait, Helene Amatdjais-Groenen and Daniela A. Wilson*,
{"title":"从内部破坏生物膜:光激活分子钻头功能化聚聚体弥合膜损伤与法定量感应介导的细胞死亡之间的差距","authors":"Bela B. Berking, Sjoerd J. Rijpkema, Bai H. E. Zhang, Arbaaz Sait, Helene Amatdjais-Groenen and Daniela A. Wilson*, ","doi":"10.1021/acsbiomaterials.4c0117710.1021/acsbiomaterials.4c01177","DOIUrl":null,"url":null,"abstract":"<p >Bacterial biofilms represent an escalating global health concern with the proliferation of drug resistance and hospital-acquired infections annually. Numerous strategies are under exploration to combat biofilms and preempt the development of antibacterial resistance. Among these, mechanical disruption of biofilms and enclosed bacteria presents a promising avenue, aiming to induce membrane permeabilization and consequent lethal damage. Herein, we introduce a hemithioindigo (HTI) motor activated by visible light, capable of disrupting sessile bacteria when integrated into a polymeric vesicle carrier. Under visible light, bacteria exhibited a notable outer membrane permeability, reduced membrane fluidity, and diminished viability following mechanical drilling. Moreover, various genetic responses pertaining to the cell envelope were examined via qRT-PCR, alongside the activation of a self-lysis mechanism associated with phage stress, which was coupled with increases in quorum sensing, demonstrating a potential self-lysis cascade from within. The multifaceted mechanisms of action, coupled with the energy efficiency of mechanical damage, underscore the potential of this system in addressing the challenges posed by pathogenic biofilms.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c01177","citationCount":"0","resultStr":"{\"title\":\"Biofilm Disruption from within: Light-Activated Molecular Drill-Functionalized Polymersomes Bridge the Gap between Membrane Damage and Quorum Sensing-Mediated Cell Death\",\"authors\":\"Bela B. Berking, Sjoerd J. Rijpkema, Bai H. E. Zhang, Arbaaz Sait, Helene Amatdjais-Groenen and Daniela A. Wilson*, \",\"doi\":\"10.1021/acsbiomaterials.4c0117710.1021/acsbiomaterials.4c01177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bacterial biofilms represent an escalating global health concern with the proliferation of drug resistance and hospital-acquired infections annually. Numerous strategies are under exploration to combat biofilms and preempt the development of antibacterial resistance. Among these, mechanical disruption of biofilms and enclosed bacteria presents a promising avenue, aiming to induce membrane permeabilization and consequent lethal damage. Herein, we introduce a hemithioindigo (HTI) motor activated by visible light, capable of disrupting sessile bacteria when integrated into a polymeric vesicle carrier. Under visible light, bacteria exhibited a notable outer membrane permeability, reduced membrane fluidity, and diminished viability following mechanical drilling. Moreover, various genetic responses pertaining to the cell envelope were examined via qRT-PCR, alongside the activation of a self-lysis mechanism associated with phage stress, which was coupled with increases in quorum sensing, demonstrating a potential self-lysis cascade from within. The multifaceted mechanisms of action, coupled with the energy efficiency of mechanical damage, underscore the potential of this system in addressing the challenges posed by pathogenic biofilms.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c01177\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01177\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01177","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Biofilm Disruption from within: Light-Activated Molecular Drill-Functionalized Polymersomes Bridge the Gap between Membrane Damage and Quorum Sensing-Mediated Cell Death
Bacterial biofilms represent an escalating global health concern with the proliferation of drug resistance and hospital-acquired infections annually. Numerous strategies are under exploration to combat biofilms and preempt the development of antibacterial resistance. Among these, mechanical disruption of biofilms and enclosed bacteria presents a promising avenue, aiming to induce membrane permeabilization and consequent lethal damage. Herein, we introduce a hemithioindigo (HTI) motor activated by visible light, capable of disrupting sessile bacteria when integrated into a polymeric vesicle carrier. Under visible light, bacteria exhibited a notable outer membrane permeability, reduced membrane fluidity, and diminished viability following mechanical drilling. Moreover, various genetic responses pertaining to the cell envelope were examined via qRT-PCR, alongside the activation of a self-lysis mechanism associated with phage stress, which was coupled with increases in quorum sensing, demonstrating a potential self-lysis cascade from within. The multifaceted mechanisms of action, coupled with the energy efficiency of mechanical damage, underscore the potential of this system in addressing the challenges posed by pathogenic biofilms.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture